2024/12/19 更新

写真a

ハチヤ ヒロタカ
八谷 大岳
所属
システム工学部 知能情報学メジャー
職名
准教授
兼務
社会インフォマティクス学環(准教授)、情報学領域(准教授)
emailアドレス
emailアドレス
外部リンク

学位

  • 博士(工学)

経歴

  • 2023年04月
    -
    継続中

    和歌山大学   大学院システム工学研究科   准教授

  • 2020年04月
    -
    継続中

    株式会社サイバーリンクス   技術アドバイザー

  • 2019年09月
    -
    2020年03月

    株式会社 サイバーリンクス   顧問

  • 2017年06月
    -
    継続中

    理化学研究所   革新知能統合研究センター   客員研究員

  • 2017年04月
    -
    2023年03月

    和歌山大学   大学院システム工学研究科   講師

  • 2015年08月
    -
    2017年03月

    キヤノン株式会社   主任研究員

  • 2012年07月
    -
    2015年07月

    キヤノン株式会社   研究員

▼全件表示

研究分野

  • 情報通信 / 知能情報学

【学部】授業等(実験、演習、卒業論文指導、卒業研究、課題研究を含む)

  • 2023年度   知能情報学演習   専門教育科目

  • 2023年度   卒業研究(II)   専門教育科目

  • 2023年度   人工知能演習   専門教育科目

  • 2023年度   ◆データ解析   専門教育科目

  • 2022年度   人工知能概論   連携展開科目

  • 2022年度   人工知能の初歩   連携展開科目

  • 2022年度   知能情報学演習   専門教育科目

  • 2022年度   卒業研究   専門教育科目

  • 2022年度   人工知能演習   専門教育科目

  • 2022年度   人工知能   専門教育科目

  • 2022年度   データ解析   専門教育科目

  • 2021年度   知能情報学演習   専門教育科目

  • 2021年度   人工知能演習   専門教育科目

  • 2021年度   人工知能   専門教育科目

  • 2021年度   卒業研究   専門教育科目

  • 2021年度   卒業研究   専門教育科目

  • 2021年度   データ解析   専門教育科目

  • 2021年度   システム工学入門セミナー   専門教育科目

  • 2021年度   人工知能概論   連携展開科目

  • 2021年度   人工知能の初歩   連携展開科目

  • 2020年度   卒業研究   専門教育科目

  • 2020年度   卒業研究   専門教育科目

  • 2020年度   人工知能演習   専門教育科目

  • 2020年度   データ解析   専門教育科目

  • 2020年度   知能情報学演習   専門教育科目

  • 2020年度   人工知能   専門教育科目

  • 2020年度   人工知能概論   連携展開科目

  • 2020年度   人工知能の初歩   連携展開科目

  • 2019年度   卒業研究   専門教育科目

  • 2019年度   人工知能   専門教育科目

  • 2019年度   データ解析   専門教育科目

  • 2019年度   知能情報学演習   専門教育科目

  • 2019年度   知能システム演習   専門教育科目

  • 2018年度   卒業研究   専門教育科目

  • 2018年度   データ解析   専門教育科目

  • 2018年度   知能情報学演習   専門教育科目

  • 2018年度   知能システム演習   専門教育科目

  • 2018年度   システム工学入門セミナー   専門教育科目

  • 2018年度   人工知能   専門教育科目

  • 2017年度   データ解析   専門教育科目

  • 2017年度   知能情報学演習   専門教育科目

  • 2017年度   知能システム演習   専門教育科目

  • 2017年度   人工知能   専門教育科目

▼全件表示

【大学院】授業等

  • 2023年度   システム工学研究ⅡB(先進)   博士前期

  • 2023年度   システム工学研究ⅡA(先進)   博士前期

  • 2023年度   システム工学研究ⅠB(先進)   博士前期

  • 2023年度   システム工学研究ⅠA(先進)   博士前期

  • 2023年度   システム工学講究ⅡB(先進)   博士前期

  • 2023年度   システム工学講究ⅡA(先進)   博士前期

  • 2023年度   システム工学講究ⅠB(先進)   博士前期

  • 2023年度   システム工学講究ⅠA(先進)   博士前期

  • 2023年度   システム工学特別講究Ⅰ   博士後期

  • 2023年度   システム工学特別講究Ⅰ   博士後期

  • 2023年度   システム工学特別講究Ⅱ   博士後期

  • 2023年度   システム工学特別講究Ⅱ   博士後期

  • 2023年度   システム工学特別研究   博士後期

  • 2023年度   システム工学特別研究   博士後期

  • 2023年度   システム工学グローバル講究Ⅰ   博士後期

  • 2023年度   システム工学グローバル講究Ⅰ   博士後期

  • 2023年度   システム工学グローバル講究Ⅱ   博士後期

  • 2023年度   システム工学グローバル講究Ⅱ   博士後期

  • 2022年度   システム工学グローバル講究Ⅱ   博士後期

  • 2022年度   システム工学グローバル講究Ⅰ   博士後期

  • 2022年度   システム工学特別研究   博士後期

  • 2022年度   システム工学特別講究Ⅱ   博士後期

  • 2022年度   システム工学特別講究Ⅰ   博士後期

  • 2022年度   システム工学研究ⅡB   博士前期

  • 2022年度   システム工学研究ⅡA   博士前期

  • 2022年度   システム工学研究ⅠB   博士前期

  • 2022年度   システム工学研究ⅠA   博士前期

  • 2022年度   システム工学講究ⅡB   博士前期

  • 2022年度   システム工学講究ⅡA   博士前期

  • 2022年度   システム工学講究ⅠB   博士前期

  • 2022年度   システム工学講究ⅠA   博士前期

  • 2021年度   システム工学グローバル講究Ⅱ   博士後期

  • 2021年度   システム工学グローバル講究Ⅰ   博士後期

  • 2021年度   システム工学特別研究   博士後期

  • 2021年度   システム工学特別講究Ⅱ   博士後期

  • 2021年度   システム工学特別講究Ⅰ   博士後期

  • 2021年度   システム工学研究ⅡB   博士前期

  • 2021年度   システム工学研究ⅡA   博士前期

  • 2021年度   システム工学研究ⅠB   博士前期

  • 2021年度   システム工学研究ⅠA   博士前期

  • 2021年度   システム工学講究ⅡB   博士前期

  • 2021年度   システム工学講究ⅡA   博士前期

  • 2021年度   システム工学講究ⅠB   博士前期

  • 2021年度   システム工学講究ⅠA   博士前期

  • 2020年度   システム工学グローバル講究Ⅱ   博士後期

  • 2020年度   システム工学グローバル講究Ⅰ   博士後期

  • 2020年度   システム工学特別研究   博士後期

  • 2020年度   システム工学特別講究Ⅱ   博士後期

  • 2020年度   システム工学特別講究Ⅰ   博士後期

  • 2020年度   システム工学研究ⅡB   博士前期

  • 2020年度   システム工学研究ⅡA   博士前期

  • 2020年度   システム工学研究ⅠB   博士前期

  • 2020年度   システム工学研究ⅠA   博士前期

  • 2020年度   システム工学講究ⅡB   博士前期

  • 2020年度   システム工学講究ⅡA   博士前期

  • 2020年度   システム工学講究ⅠB   博士前期

  • 2020年度   システム工学講究ⅠA   博士前期

  • 2019年度   システム工学特別講究Ⅰ   博士後期

  • 2019年度   システム工学特別講究Ⅰ   博士後期

  • 2019年度   システム工学特別研究   博士後期

  • 2019年度   システム工学特別研究   博士後期

  • 2019年度   システム工学講究ⅡB   博士前期

  • 2019年度   システム工学講究ⅡA   博士前期

  • 2019年度   システム工学講究ⅠB   博士前期

  • 2019年度   システム工学講究ⅠA   博士前期

  • 2019年度   システム工学研究ⅡB   博士前期

  • 2019年度   システム工学研究ⅡA   博士前期

  • 2019年度   システム工学研究ⅠB   博士前期

  • 2019年度   システム工学研究ⅠA   博士前期

  • 2018年度   システム工学グローバル講究Ⅱ   博士後期

  • 2018年度   システム工学グローバル講究Ⅱ   博士後期

  • 2018年度   システム工学特別研究   博士後期

  • 2018年度   システム工学特別研究   博士後期

  • 2018年度   システム工学研究ⅡB   博士前期

  • 2018年度   システム工学研究ⅡA   博士前期

  • 2018年度   システム工学研究ⅠB   博士前期

  • 2018年度   システム工学研究ⅠA   博士前期

  • 2018年度   システム工学講究ⅡB   博士前期

  • 2018年度   システム工学講究ⅡA   博士前期

  • 2018年度   システム工学講究ⅠB   博士前期

  • 2018年度   システム工学講究ⅠA   博士前期

  • 2017年度   システム工学グローバル講究Ⅱ   博士後期

  • 2017年度   システム工学特別研究   博士後期

  • 2017年度   システム工学特別研究   博士後期

  • 2017年度   システム工学特別講究Ⅱ   博士後期

  • 2017年度   システム工学特別講究Ⅱ   博士後期

  • 2017年度   システム工学特別講究Ⅰ   博士後期

  • 2017年度   システム工学特別講究Ⅰ   博士後期

  • 2017年度   システム工学研究ⅡB   博士前期

  • 2017年度   システム工学研究ⅡA   博士前期

  • 2017年度   システム工学研究ⅠA   博士前期

  • 2017年度   システム工学講究ⅡB   博士前期

  • 2017年度   システム工学講究ⅡA   博士前期

  • 2017年度   システム工学講究ⅠB   博士前期

  • 2017年度   システム工学講究ⅠA   博士前期

▼全件表示

【大学院】サテライト科目

  • 2020年度   現代社会における知的情報通信システム   その他

論文

  • Randomized Channel-Pass Mask for Channel-Wise Explanation of Black-Box Models

    Hirotaka Hachiya, Daiki Nisawa

    Lecture Notes in Computer Science ( Springer Nature Singapore )    454 - 468   2024年12月

    DOI

  • MLP-Mixer based surrogate model for seismic ground motion with spatial source and geometry parameters

    Hirotaka Hachiya, Yuto Kuroki, Asako Iwaki, Takahiro Maeda, Naonori Ueda, Hiroyuki Fujiwara (担当区分: 筆頭著者 )

    Proceedings of Asian Conference on Machine Learning (ACML)     2024年12月  [査読有り]

  • Specular Surface Detection with Deep Static Specular Flow and Highlight

    Hirotaka Hachiya, Yuto Yoshimura (担当区分: 筆頭著者 )

    Machine Vision and Applications ( Springer Science and Business Media LLC )  35 ( 6 )   2024年09月  [査読有り]

    DOI

  • Permutation Dependent Feature Mixing in TSMixer for Multivariate Time Series Forecasting

    Rikuto Yamazono, Hirotaka Hachiya (担当区分: 最終著者 )

    Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD), 2024     2024年09月  [査読有り]

  • Multi-class AUC maximization for imbalanced ordinal multi-stage tropical cyclone intensity change forecast

    Hirotaka Hachiya, Hiroki Yoshida, Udai Shimada, Naonori Ueda (担当区分: 筆頭著者 )

    Machine Learning with Applications ( Elsevier BV )  17   100569 - 100569   2024年09月  [査読有り]

    DOI

  • A Multi-Fusion Residual Attention U-Net Using Temporal Information for Segmentation of Left Ventricular Structures in 2D Echocardiographic Videos

    Kai Wang, Hirotaka Hachiya, Haiyuan Wu

    International Journal of Imaging Systems and Technology     2024年07月  [査読有り]

  • Set representative vector and its asymmetric attention-based transformation for heterogeneous set-to-set matching

    Hirotaka Hachiya, Yuki Saito (担当区分: 筆頭著者 )

    Neurocomputing     2024年04月  [査読有り]

    DOI

  • A Transformer-based fully trainable point process

    Hirotaka Hachiya, Fumiya Nishizawa (担当区分: 筆頭著者 )

    IEICE Transaction on Information and Systems     2024年  [査読有り]

  • INTERPRETABLE DEEP INPAINTING BASED ON SUBSURFACE STRUCTURE DATA FOR SPATIAL INTERPOLATION OF SEISMIC MOTIONS

    HACHIYA Hirotaka, TARASUKI Yuka, IWAKI Asako, MAEDA Takahiro, UEDA Naonori, FUJIWARA Hiroyuki (担当区分: 筆頭著者 )

    Journal of Japan Association for Earthquake Engineering ( Japan Association for Earthquake Engineering )  24 ( 5 ) 5_35 - 5_44   2024年  [査読有り]

    DOI

  • Frequency-Dependent Image Reconstruction Error for Micro Defect Detection

    Yuhei Nomura, Hirotaka Hachiya (担当区分: 最終著者 )

    Proceedings of The 15th Asian Conference on Machine Learning (ACML2023)     2023年11月  [査読有り]

  • Position-dependent partial convolutions for supervised spatial interpolation

    Hirotaka Hachiya, Kotaro Nagayoshi, Asako Iwaki, Takahiro Maeda, Naonori Ueda, Hiroyuki Fujiwara (担当区分: 筆頭著者 )

    Machine Learning with Applications ( Elsevier BV )    100514 - 100514   2023年11月  [査読有り]

    DOI

  • Combining Static Specular Flow and Highlight with Deep Features for Specular Surface Detection

    Hirotaka Hachiya, Yuta Yoshimura (担当区分: 筆頭著者 )

    Proceedings of The 18th International Conference on Machine Vision Applications (MVA2023)     2023年07月  [査読有り]

  • Encoder–decoder-based image transformation approach for integrating multiple spatial forecasts

    Hirotaka Hachiya, Yusuke Masumoto, Atsushi Kudo, Naonori Ueda (担当区分: 筆頭著者 )

    Machine Learning with Applications ( Elsevier BV )  12 ( 100473 ) 1 - 11   2023年05月  [査読有り]

    DOI

  • Multistream-Based Marked Point Process With Decomposed Cumulative Hazard Functions

    Hirotaka Hachiya, Sujun Hong (担当区分: 筆頭著者 )

    Neural Computation ( MIT Press )  35 ( 4 ) 699 - 726   2023年03月  [査読有り]

     概要を見る

    Abstract

    When applying a point process to a real-world problem, an appropriate intensity function model should be designed based on physical and mathematical prior knowledge. Recently, a fully trainable deep learning–based approach has been developed for temporal point processes. In this approach, a cumulative hazard function (CHF) capable of systematic computation of adaptive intensity function is modeled in a data-driven manner. However, in this approach, although many applications of point processes generate various kinds of information such as location, magnitude, and depth, the mark information of events is not considered. To overcome this limitation, we propose a fully trainable marked point process method for modeling decomposed CHFs for time and mark prediction using multistream deep neural networks. We demonstrate the effectiveness of the proposed method through experiments with synthetic and real-world event data.

    DOI

  • Multi‐feature subspace representation network for person re‐identification via bird's‐eye view image

    Jiwei Zhang, Haiyuan Wu, Qian Chen, Hirotaka Hachiya

    Computer Animation and Virtual Worlds ( Wiley )    2023年02月  [査読有り]

    DOI

  • Position-dependent partial convolutions for supervised spatial interpolation

    Hirotaka Hachiya, Kotaro Nagayoshi, Asako Iwaki, Takahiro Maeda, Naonori Ueda, Hiroyuki Fujiwara (担当区分: 筆頭著者 )

    Proceedings of The 14th Asian Conference on Machine Learning (ACML2022)   189   420 - 435   2022年12月  [査読有り]

  • Study on Echocardiographic Image Segmentation Based on Attention U-Net

    Kai Wang, Jiwei Zhang, Hirotaka Hachiya, Haiyuan Wu

    2022 IEEE International Conference on Mechatronics and Automation (ICMA) ( IEEE )    2022年08月  [査読有り]

    DOI

  • Multi-stream based Marked Point Process

    Sujun Hong, Hirotaka Hachiya (担当区分: 責任著者 )

    Proceedings of the 13th Asian Conference on Machine Learning (ACML2021)     2021年11月  [査読有り]

  • Encoder-decoder-based image transformation approach for integrating precipitation forecasts ACML

    Hirotaka Hachiya, Yusuke Masumoto, Yuki Mori, Naonori Ueda (担当区分: 筆頭著者 )

    Proceedings of the 13th Asian Conference on Machine Learning (ACML2021)     2021年11月  [査読有り]

  • Simulation of broad-band ground motions with consistent long-period and short-period components using the Wasserstein interpolation of acceleration envelopes

    Tomohisa Okazaki, Hirotaka Hachiya, Asako Iwaki, Takahiro Maeda, Hiroyuki Fujiwara, Naonori Ueda

    Geophysical Journal International ( OXFORD UNIV PRESS )  227 ( 1 ) 333 - 349   2021年10月  [査読有り]

     概要を見る

    Practical hybrid approaches for the simulation of broad-band ground motions often combine long-period and short-period waveforms synthesized by independent methods under different assumptions for different period ranges, which at times can lead to incompatible time histories and frequency properties. This study explores an approach that generates consistent broad-hand waveforms using past observation records, under the assumption that long-period waveforms can he obtained from physics-based simulations. Specifically, acceleration envelopes and Fourier amplitude spectra are transformed from long-period to short-period using machine learning methods, and they arc combined to produce a broad-band waveform. To effectively obtain the relationship of high-dimensional envelopes from limited amount of data, we (I) l'onnulate the problem as the conversion of probability distributions, which enables the introduction of a metric known as the Wasserstein distance, and (2) embed pairs of longperiod and short-period envelopes into a common latent space to improve the consistency of the entire waveform. An experimental application to a past earthquake demonstrates that the proposed method exhibits superior performance compared to existing methods as well as neural network approaches. In particular, the proposed method reproduces global properties in the time domain, which confirms the effectiveness of the embedding approach as well as the advantage of the Wasserstein distance as a measure of dissimilarity of the envelopes. This method serves as a novel machine learning approach that maintains consistency both in the time-domain and frequency-domain properties of waveforms.

    DOI

  • Exchangeable Deep Neural Networks for Set-to-Set Matching and Learning

    Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, Kenji Fukumizu

    Proceedings of the 16th European Conference on Computer Vision (ECCV2020) ( Springer International Publishing )    626 - 646   2020年08月  [査読有り]

    DOI

  • Direct Multi-class AUC Maximization for Forecasting Rapidly Intensifying Tropical Cyclones

    Hirotaka Hachiya, Shumpei Kurora, Udai Shimada, Naonori Ueda (担当区分: 筆頭著者 )

    JpGU-AGU Joint Meeting 2020     2020年07月  [査読有り]

  • Adaptive truncated residuals regression for fine-grained regression problems

    Hirotaka Hachiya, Yu Yamamamoto, Kazuhiro Hirahara, Naonori Ueda (担当区分: 筆頭著者 )

    Proceedings of the 11th Asian Conference on Machine Learning (ACML2019) ( ACML )    2019年11月  [査読有り]

  • Machine Learning Approach for Adaptive Integration of Multiple Relative Intensity Models toward Improved Earthquake Forecasts in Japan

    Hirotaka Hachiya, Kazuro Hirahara, Naonori Ueda

    International Union of Geodesy and Geophysics (IUGG2019) ( IUGG )    2019年07月  [査読有り]

  • Broadband ground-motion synthesis using embeddig machine learning

    omohisa Okazaki, Hirotaka Hachiya, Naonori Ueda, Asako Iwaki, Takahiro Maeda, Hiroyuki Fujiwara

    International Union of Geodesy and Geophysics (IUGG2019)     2019年05月  [査読有り]

  • Synthesis of Broadband Ground Motions Using Embedding and Neural Networks

    Tomohisa Okazaki, Hirotaka Hachiya, Naonori Ueda, Asako Iwaki, Takahiro Maeda, Hiroyuki Fujiwara

    European Geosciences Union (EGU) ( EGU )    2019年04月  [査読有り]

  • Machine learning approach for constraining the plausible ranges of frictional parameters on the Philippine Sea plate reproducing the historical sequences of the Nankai megaquakes

    Hirotaka Hachiya, Yu Yamamamoto, Kazuhiro Hirahara, Atsushi Takahashi, Naonori Ueda

    European Geosciences Union (EGU) ( EGU )    2019年04月  [査読有り]

  • 3D Faster R-CNNとレーザスキャンとの組み合わせによる特定物体の頑健な距離推定

    八谷大岳、射手矢和真、中村恭之

    計測自動制御学会論文集   55(1)   2019年01月  [査読有り]

  • Distance estimation with 2.5D anchors and its application to robot navigation

    Hirotaka Hachiya, Yuki Saito, Kazuma Iteya, Masaya Nomura, Takayuki Nakamura

    ROBOMECH Journal ( Springer Nature )  5 ( 1 )   2018年12月  [査読有り]

    DOI

  • 2.5D Faster R-CNN for Distance Estimation

    Hirotaka Hachiya, Yuki Saito, Kazuma Iteya, Masaya Nomura, Takayuki Nakamura

    IEEE International Conference on Systems, Man, and Cybernetics ( IEEE )    2018年10月  [査読有り]

  • Information-Maximization Clustering Based on Squared-Loss Mutual Information.

    Masashi Sugiyama, Gang Niu, Makoto Yamada, Manabu Kimura, Hirotaka Hachiya

    Neural Computation   26 ( 1 ) 84 - 131   2014年  [査読有り]

    DOI

  • Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers

    Hyunha Nam, Hirotaka Hachiya, Masashi Sugiyama

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG )  E96D ( 8 ) 1871 - 1874   2013年08月  [査読有り]

     概要を見る

    Multi-label classification allows a sample to belong to multiple classes simultaneously, which is often the case in real-world applications such as text categorization and image annotation. In multi-label scenarios, taking into account correlations among multiple labels can boost the classification accuracy. However, this makes classifier training more challenging because handling multiple labels induces a high-dimensional optimization problem. In this paper, we propose a scalable multi-label method based on the least-squares probabilistic classifier. Through experiments, we show the usefulness of our proposed method.

    DOI

  • Feature Selection via l(1)-Penalized Squared-Loss Mutual Information

    Wittawat Jitkrittum, Hirotaka Hachiya, Masashi Sugiyama

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG )  E96D ( 7 ) 1513 - 1524   2013年07月  [査読有り]

     概要を見る

    Feature selection is a technique to screen out less important features. Many existing supervised feature selection algorithms use redundancy and relevancy as the main criteria to select features. However, feature interaction, potentially a key characteristic in real-world problems, has not received much attention. As an attempt to take feature interaction into account, we propose l(1)-LSMI, an l(1)-regularization based algorithm that maximizes a squared-loss variant of mutual information between selected features and outputs. Numerical results show that l(1)-LSMI performs well in handling redundancy, detecting non-linear dependency, and considering feature interaction.

    DOI

  • Efficient Sample Reuse in Policy Gradients with Parameter-Based Exploration

    Tingting Zhao, Hirotaka Hachiya, Voot Tangkaratt, Jun Morimoto, Masashi Sugiyama

    NEURAL COMPUTATION ( MIT PRESS )  25 ( 6 ) 1512 - 1547   2013年06月  [査読有り]

     概要を見る

    The policy gradient approach is a flexible and powerful reinforcement learning method particularly for problems with continuous actions such as robot control. A common challenge is how to reduce the variance of policy gradient estimates for reliable policy updates. In this letter, we combine the following three ideas and give a highly effective policy gradient method: (1) policy gradients with parameter-based exploration, a recently proposed policy search method with low variance of gradient estimates; (2) an importance sampling technique, which allows us to reuse previously gathered data in a consistent way; and (3) an optimal baseline, which minimizes the variance of gradient estimates with their unbiasedness being maintained. For the proposed method, we give a theoretical analysis of the variance of gradient estimates and show its usefulness through extensive experiments.

  • Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting

    Ning Xie, Hirotaka Hachiya, Masashi Sugiyama

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG )  E96D ( 5 ) 1134 - 1144   2013年05月  [査読有り]

     概要を見る

    Oriental ink painting, called Sumi-e, is one of the most distinctive painting styles and has attracted artists around the world. Major challenges in Sumi-e simulation are to abstract complex scene information and reproduce smooth and natural brush strokes. To automatically generate such strokes, we propose to model the brush as a reinforcement learning agent, and let the agent learn the desired brush-trajectories by maximizing the sum of rewards in the policy search framework. To achieve better performance, we provide elaborate design of actions, states, and rewards specifically tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through experiments on Sumi-e simulation.

    DOI

  • Squared-loss Mutual Information Regularization

    Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya, Masashi Sugiyama

    International Conference on Machine Learning (ICML2013) ( International Machine Learning Society (IMLS) )    10--18   2013年  [査読有り]

  • Relative Density-Ratio Estimation for Robust Distribution Comparison.

    Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Masashi Sugiyama

    Neural Computation   25 ( 5 ) 1324 - 1370   2013年  [査読有り]

    DOI

  • Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems

    Jaak Simm, Masashi Sugiyama, Hirotaka Hachiya

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG )  E95D ( 10 ) 2426 - 2437   2012年10月  [査読有り]

     概要を見る

    Reinforcement learning (RL) is a flexible framework for learning a decision rule in an unknown environment. However, a large number of samples are often required for finding a useful decision rule. To mitigate this problem, the concept of transfer learning has been employed to utilize knowledge obtained from similar RL tasks. However, most approaches developed so far are useful only in low-dimensional settings. In this paper, we propose a novel transfer learning idea that targets problems with high-dimensional states. Our idea is to transfer knowledge between state factors (e.g., interacting objects) within a single RL task. This allows the agent to learn the system dynamics of the target RL task with fewer data samples. The effectiveness of the proposed method is demonstrated through experiments.

    DOI

  • Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition

    Hirotaka Hachiya, Masashi Sugiyama, Naonori Ueda

    NEUROCOMPUTING ( ELSEVIER SCIENCE BV )  80   93 - 101   2012年03月  [査読有り]

     概要を見る

    Human activity recognition from accelerometer data (e.g., obtained by smart phones) is gathering a great deal of attention since it can be used for various purposes such as remote health-care. However, since collecting labeled data is bothersome for new users, it is desirable to utilize data obtained from existing users. In this paper, we formulate this adaptation problem as learning under covariate shift, and propose a cornputationally efficient probabilistic classification method based on adaptive importance sampling. The usefulness of the proposed method is demonstrated in real-world human activity recognition. (C) 2011 Elsevier B.V. All rights reserved.

    DOI

  • Analysis and improvement of policy gradient estimation

    Tingting Zhao, Hirotaka Hachiya, Gang Niu, Masashi Sugiyama

    NEURAL NETWORKS ( PERGAMON-ELSEVIER SCIENCE LTD )  26   118 - 129   2012年02月  [査読有り]

     概要を見る

    Policy gradient is a useful model-free reinforcement learning approach, but it tends to suffer from instability of gradient estimates. In this paper, we analyze and improve the stability of policy gradient methods. We first prove that the variance of gradient estimates in the PGPE (policy gradients with parameter-based exploration) method is smaller than that of the classical REINFORCE method under a mild assumption. We then derive the optimal baseline for PGPE, which contributes to further reducing the variance. We also theoretically show that PGPE with the optimal baseline is more preferable than REINFORCE with the optimal baseline in terms of the variance of gradient estimates. Finally, we demonstrate the usefulness of the improved PGPE method through experiments. (c) 2011 Elsevier Ltd. All rights reserved.

    DOI

  • COMPUTATIONALLY EFFICIENT MULTI-LABEL CLASSIFICATION BY LEAST-SQUARES PROBABILISTIC CLASSIFIER

    Hyun Ha Nam, Hirotaka Hachiya, Masashi Sugiyama

    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) ( IEEE )    2077 - 2080   2012年  [査読有り]

     概要を見る

    Multi-label classification allows a sample to belong to multiple classes simultaneously, which is often the case in real-world applications such as audio tagging, image annotation, video search, and text mining. In such a multi-label scenario, taking into account correlation between multiple labels can boost the classification accuracy. However, this in turn makes classifier training more challenging because handling multiple labels tends to induce a high-dimensional optimization problem. In this paper, we propose a highly scalable multilabel classifier based on a computationally efficient classification algorithm called the least-squares probabilistic classifier. Through experiments, we show the usefulness of our proposed method.

  • Reward-Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning

    Hirotaka Hachiya, Jan Peters, Masashi Sugiyama

    NEURAL COMPUTATION ( MIT PRESS )  23 ( 11 ) 2798 - 2832   2011年11月  [査読有り]

     概要を見る

    Direct policy search is a promising reinforcement learning framework, in particular for controlling continuous, high-dimensional systems. Policy search often requires a large number of samples for obtaining a stable policy update estimator, and this is prohibitive when the sampling cost is expensive. In this letter, we extend an expectation-maximization-based policy search method so that previously collected samples can be efficiently reused. The usefulness of the proposed method, reward-weighted regression with sample reuse (R-3), is demonstrated through robot learning experiments. (This letter is an extended version of our earlier conference paper: Hachiya, Peters, & Sugiyama, 2009.)

    DOI

  • On information-maximization clustering: Tuning parameter selection and analytic solution

    Masashi Sugiyama, Makoto Yamada, Manabu Kimura, Hirotaka Hachiya

    Proceedings of the 28th International Conference on Machine Learning, ICML 2011     65 - 72   2011年  [査読有り]

     概要を見る

    Information-maximization clustering learns a probabilistic classifier in an unsupervised manner so that mutual information between feature vectors and cluster assignments is maximized. A notable advantage of this approach is that it only involves continuous optimization of model parameters, which is substantially easier to solve than discrete optimization of cluster assignments. However, existing methods still involve non-convex optimization problems, and therefore finding a good local optimal solution is not straightforward in practice. In this paper, we propose an alternative information-maximization clustering method based on a squared-loss variant of mutual information. This novel approach gives a clustering solution analytically in a computationally efficient way via kernel eigenvalue decomposition. Furthermore, we provide a practical model selection procedure that allows us to objectively optimize tuning parameters included in the kernel function. Through experiments, we demonstrate the usefulness of the proposed approach. Copyright 2011 by the author(s)/owner(s).

  • Least absolute policy iteration - A robust approach to value function approximation

    Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Mortmura

    IEICE Transactions on Information and Systems   E93-D ( 9 ) 2555 - 2565   2010年09月  [査読有り]

     概要を見る

    Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational e?ciency. However, it tends to be sensitive to outliers in observed rewards. In this paper, we propose an alternative method that employs the absolute loss for enhancing robustness and reliability. The proposed method is formulated as a linear programming problem which can be solved eficiently by standard optimization software, so the computational advantage is not sacrificed for gaining robustness and reliability. We demonstrate the usefulness of the proposed approach through a simulated robot-control task. Copyright © 2010 The Institute of Electronics, Information and Communication Engineers.

    DOI

  • Least Absolute Policy Iteration-A Robust Approach to Value Function Approximation

    Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Morimura

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG )  E93D ( 9 ) 2555 - 2565   2010年09月  [査読有り]

     概要を見る

    Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational efficiency. However, it tends to be sensitive to outliers in observed rewards. In this paper, we propose an alternative method that employs the absolute loss for enhancing robustness and reliability. The proposed method is formulated as a linear programming problem which can be solved efficiently by standard optimization software, so the computational advantage is not sacrificed for gaining robustness and reliability. We demonstrate the usefulness of the proposed approach through a simulated robot-control task.

    DOI

  • Efficient exploration through active learning for value function approximation in reinforcement learning

    Takayuki Akiyama, Hirotaka Hachiya, Masashi Sugiyama

    NEURAL NETWORKS ( PERGAMON-ELSEVIER SCIENCE LTD )  23 ( 5 ) 639 - 648   2010年06月  [査読有り]

     概要を見る

    Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularly useful when the sampling cost of immediate rewards is high. The effectiveness of the proposed method, which we call active policy iteration (API), is demonstrated through simulations with a batting robot. (C) 2010 Elsevier Ltd. All rights reserved.

    DOI

  • Parametric return density estimation for Reinforcement Learning

    Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka

    Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010     368 - 375   2010年  [査読有り]

     概要を見る

    Most conventional Reinforcement Learning (RL) algorithms aim to optimize decision-making rules in terms of the expected re-turns. However, especially for risk management purposes, other risk-sensitive criteria such as the value-at-risk or the expected shortfall are sometimes preferred in real applications. Here, we describe a parametric method for estimating density of the returns, which allows us to handle various criteria in a unified manner. We first extend the Bellman equation for the conditional expected return to cover a conditional probability density of the returns. Then we derive an extension of the TD-learning algorithm for estimating the return densities in an unknown environment. As test instances, several parametric density estimation algorithms are presented for the Gaussian, Laplace, and skewed Laplace distributions. We show that these algorithms lead to risk-sensitive as well as robust RL paradigms through numerical experiments.

  • Least-squares conditional density estimation

    Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara

    IEICE Transactions on Information and Systems   E93-D ( 3 ) 583 - 594   2010年  [査読有り]

     概要を見る

    Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation. Experiments using benchmark and robot transition datasets illustrate the usefulness of the proposed approach. Copyright © 2010 The Institute of Electronics, Information and Communication Engineers.

    DOI

  • Nonparametric return distribution approximation for reinforcement learning

    Tetsuro Morimurat, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka

    ICML 2010 - Proceedings, 27th International Conference on Machine Learning     799 - 806   2010年  [査読有り]

     概要を見る

    Standard Reinforcement Learning (RL) aims to optimize decision-making rules in terms of the expected return. However, especially for risk-management purposes, other criteria such as the expected shortfall are some-times preferred. Here, we describe a method of approximating the distribution of returns, which allows us to derive various kinds of information about the returns. We first show that the Bellman equation, which is a recursive formula for the expected return, can be extended to the cumulative return distribution. Then we derive a nonparametric return distribution estimator with particle smooth ing based on this extended Bellman equation. A key aspect of the proposed algorithm is to represent the recursion relation in the extended Bellman equation by a simple replacement procedure of particles associated with a state by using those of the successor state. We show that our algorithm leads to a risk-sensitive R.L paradigm. The usefulness of the proposed approach is demonstrated through numerical experiments. Copyright 2010 by the author(s)/owner(s).

  • Conditional density estimation via least-squares density ratio estimation

    Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara

    Journal of Machine Learning Research   9   781 - 788   2010年  [査読有り]

     概要を見る

    Estimating the conditional mean of an inputoutput relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation. Our basic idea is to express the conditional density in terms of the ratio of unconditional densities, and the ratio is directly estimated without going through density estimation. Experiments using benchmark and robot transition datasets illustrate the usefulness of the proposed approach. Copyright 2010 by the authors.

  • Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information

    Hirotaka Hachiya, Masashi Sugiyama

    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2010 ( SPRINGER-VERLAG BERLIN )  6321   474 - 489   2010年  [査読有り]

     概要を見る

    Model-free reinforcement learning (RL) is a machine learning approach to decision making in unknown environments. However, real-world RL tasks often involve high-dimensional state spaces, and then standard RL methods do not perform well. In this paper, we propose a new feature selection framework for coping with high dimensionality. Our proposed framework adopts conditional mutual information between return and state-feature sequences as a feature selection criterion, allowing the evaluation of implicit state-reward dependency. The conditional mutual information is approximated by a least-squares method, which results in a computationally efficient feature selection procedure. The usefulness of the proposed method is demonstrated on grid-world navigation problems.

  • Adaptive importance sampling for value function approximation in off-policy reinforcement learning

    Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiayma, Jan Peters

    Neural Networks   22 ( 10 ) 1399 - 1410   2009年12月  [査読有り]

     概要を見る

    Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations. © 2009 Elsevier Ltd. All rights reserved.

    DOI

  • Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning

    Takayuki Akiyama, Hirotaka Hachiya, Masashi Sugiyama

    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS ( IJCAI-INT JOINT CONF ARTIF INTELL )    980 - 985   2009年  [査読有り]

     概要を見る

    Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularly useful when the sampling cost of immediate rewards is high. We demonstrate the usefulness of the proposed method, named active policy iteration (API), through simulations with a batting robot.

  • Efficient Data Reuse in Value Function Approximation.

    Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, Jan Peters

    ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING ( IEEE )    8 - +   2009年  [査読有り]

     概要を見る

    Off-policy reinforcement learning is aimed at efficiently using data samples gathered from a policy that is different from the currently optimized policy. A common approach is to use importance sampling techniques for compensating for the bias of value function estimators caused by the difference between the data-sampling policy and the target policy. However, existing off-policy methods often do not take the variance of the value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. The usefulness of the proposed approach is demonstrated through simulated swing-up inverted-pendulum problem.

  • Efficient Sample Reuse in EM-Based Policy Search

    Hirotaka Hachiya, Jan Peters, Masashi Sugiyama

    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, ECML PKDD 2009 ( SPRINGER-VERLAG BERLIN )  5781   469 - +   2009年  [査読有り]

     概要を見る

    Direct policy search is a, promising reinforcement learning framework in particular for controlling in continuous, high-dimensional systems such as anthropomorphic robots. Policy search often requires a large number of samples for obtaining a stable policy update estimator due to its high flexibility. However, this is prohibitive when the sampling cost is expensive. Ill this paper, we extend all EM-based policy search method so that previously collected samples call be efficiently reused. The usefulness of the proposed method. called Reward-weighted Regression with. sample Reuse (R-3), is demonstrated through a robot learning experiment.

  • Least Absolute Policy Iteration for Robust Value Function Approximation

    Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Morimura

    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7 ( IEEE )    699 - +   2009年  [査読有り]

     概要を見る

    Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational efficiency. However, it tends to be sensitive to outliers in observed rewards. In this paper, we propose an alternative method that employs the absolute loss for enhancing robustness and reliability. The proposed method is formulated as a linear programming problem which can be solved efficiently by standard optimization software, so the computational advantage is not sacrificed for gaining robustness and reliability. We demonstrate the usefulness of the proposed approach through simulated robot-control tasks.

  • Geodesic Gaussian kernels for value function approximation

    Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar

    AUTONOMOUS ROBOTS ( SPRINGER )  25 ( 3 ) 287 - 304   2008年10月  [査読有り]

     概要を見る

    The least-squares policy iteration approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. In this paper, we propose a new basis function based on geodesic Gaussian kernels, which exploits the non-linear manifold structure induced by the Markov decision processes. The usefulness of the proposed method is successfully demonstrated in simulated robot arm control and Khepera robot navigation.

    DOI

  • Adaptive importance sampling with automatic model selection in value function approximation

    Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, Jan Peters

    Proceedings of the National Conference on Artificial Intelligence   3   1351 - 1356   2008年  [査読有り]

     概要を見る

    Off-policy reinforcement learning is aimed at efficiently reusing data samples gathered in the past, which is an essential problem for physically grounded AI as experiments are usually prohibitively expensive. A common approach is to use importance sampling techniques for compensating for the bias caused by the difference between data-sampling policies and the target policy. However, existing off-policy methods do not often take the variance of value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a variant of cross-validation. We demonstrate the usefulness of the proposed approach through simulations. Copyright © 2008.

  • Value function approximation on non-linear manifolds for robot motor control

    Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar

    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10 ( IEEE )    1733 - +   2007年  [査読有り]

     概要を見る

    The least squares approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. In this paper, we propose a new basis function based on geodesic Gaussian kernels, which exploits the non-linear manifold structure induced by the Markov decision processes. The usefulness of the proposed method is successfully demonstrated in a simulated robot arm control and Khepera robot navigation.

▼全件表示

書籍等出版物

  • ゼロからつくるPython機械学習プログラミング入門

    八谷大岳( 担当: 単著)

    講談社  2020年08月 

  • 強くなるロボティック・ゲームプレイヤーの作り方 プレミアムブック版 : 実践で学ぶ強化学習

    八谷, 大岳, 杉山, 将

    マイナビ出版  2016年  ISBN: 9784839956738

  • 強くなるロボティック・ゲームプレイヤーの作り方 : 実践で学ぶ強化学習

    八谷, 大岳, 杉山, 将

    毎日コミュニケーションズ  2008年  ISBN: 9784839927417

Works

  • ロボカップジュニア・ジャパンオープン2018

    2018年03月

     概要を見る

    2017.3.31-2018.4.1,主催:ロボカップジュニア・ジャパンオープン2018和歌山大会開催委員会,規模:全国大会,競技会開催(審判、運営協力者),ポスター審査員

  • つくばチャレンジ2017

    2017年11月

     概要を見る

    2017.11.10,主催:つくばチャレンジ実行委員会、つくば市,規模:53チーム・65台のロボットが出場,受賞等:自律走行のマイルストーン2(1km)の達成,全国大会

講演・口頭発表等

  • RGBと偏光情報の深層マルチモーダル統合による鏡面検出

    吉村優大, 八谷大岳

    第27回 画像の認識・理解シンポジウム(MIRU2024)  2024年08月  

  • 地震ハザード評価のための地震動シミュレーションの代理モデルの構築とその拡張

    黒木悠斗, 八谷大岳, 岩城麻子, 前田宜浩, 上田修功, 藤原広行

    第27回 画像の認識・理解シンポジウム(MIRU2024)  2024年08月  

  • 周波数空間MLP-Mixerを用いた鏡面物体検出

    黒肥地立樹, 吉村優大, 八谷大岳

    第27回 画像の認識・理解シンポジウム(MIRU2024)  2024年08月  

  • A deep learning-based approach for forecasting ground motion and precipitation

    八谷大岳  [招待有り]

    JpGU Meeting 2024  2024年05月24日  

  • ランダムチャンネルパスフィルターを用いたブラックボックスモデルの解釈

    二澤大輝, 八谷大岳

    情報論的学習理論と機械学習研究会 IBISML2023-42  2024年03月  

  • 地下構造データに基づく解釈可能な深層inpaintingによる地震動補間

    八谷 大岳, 田羅鋤 祐果, 岩城 麻子, 前田 宜浩, 上田 修功, 藤原 広行

    日本地震工学シンポジウム  2023年11月  

  • ニューラルネットを用いた1kmメッシュ気温の推定

    北村智文,小林健二,若山郁生,今井崇人,丸山拓海, 上田修功,八谷大岳,高橋温志

    気象学会秋季大会  2023年10月  

  • Position-dependent inpainting for ground motion interpolation

    Hirotaka Hachiya  [招待有り]

    Minisymposium, 10th International Congress on Industrial and Applied Mathematics  2023年08月  

  • 鏡面フローとハイライトに基づく深層特徴による鏡面検出

    吉村 優大, 八谷 大岳

    第26回 画像の認識・理解シンポジウム(MIRU2023), ショートオーラル発表  2023年07月  

  • 周波数依存の画像再構成誤差に基づく極小欠陥検出

    野村侑平, 八谷大岳

    第26回 画像の認識・理解シンポジウム(MIRU2023)  2023年07月  

  • 強震動データベースの構築と最新技術を用いたデータベースの活用

    八谷大岳  [招待有り]

    強震動データベースの構築と最新技術を用いたデータベースの活用  2023年02月  

  • Transformer-based fully trainable model for poin;process with virtual sequence vectors;its experimental evaluation

    Fumiya Nishizawa, Sujun Hong, Hirotaka Hachiya

    第25回情報論的学習理論ワークショップ  2022年11月  

  • Attention-based set embedded vector for set-to-set matching

    中村 晟人, 八谷 大岳

    第25回 画像の認識・理解シンポジウム(MIRU2022)  2022年07月  

  • Transformer-Based Fully Trainable Model for Point Process with Past Sequence-Representative Vector

    Fumiya Nishizawa, Sujun Hong, Hirotaka Hachiya

    IBISML2022-1  2022年06月  

  • 局所面形状モデルを用いた球面鏡計測

    秋吉康平, 八谷大岳

    第22回 計測自動制御学会 システムインテグレーション部門講演会  2021年12月  

  • 集合組み込みベクトルを用いたAttentionベースの順不変集合データマッチング

    中村晟人, 八谷大岳

    第24回情報論的学習理論ワークショップ  2021年11月  

  • Attention-based classification and segmentation for automatic thyroid nodule recognition and diagnosis

    戚意強, 鈴木祈史, 八谷大岳, 呉海元

    第24回 画像の認識・理解シンポジウム(MIRU2021)  2021年07月  

  • 全方位画像における正二十面体メッシュを用いた物体検出

    髙野誉将, 八谷大岳

    第24回 画像の認識・理解シンポジウム(MIRU2021)  2021年07月  

  • Encoder-decoder based image transformation approach for integrating precipitation forecasts

    Hirotaka Hachiya, Yusuke Masumoto, Yuki Mori, Naonori Ueda

    第24回 画像の認識・理解シンポジウム(MIRU2021)  2021年07月  

  • Mark-encoded image-based point process

    Sujun Hong, Hirotaka Hachiya

    第24回 画像の認識・理解シンポジウム(MIRU2021)  2021年07月  

  • U-Netを用いた時空間的な降 水量ガイダンス統合

    八谷 大岳, 増本悠介, 森 祐貴, 上田 修功

    日本気象学会2021年度春季大会  2021年05月  

  • マルチクラスAUC最大化を用いた台風発達予報

    黒良 峻平, 八谷 大岳, 嶋田 宇大, 上田 修功

    第23回情報論的学習理論ワークショップ  2020年11月  

  • Deep Inpaintingと空間分布マッチングの組み合わせによる地震動データの空間補完

    永吉 耕太郎, 八谷 大岳, 藤原 広行, 上田 修功, 岩城 麻子, 前田 宜浩

    第23回情報論的学習理論ワークショップ  2020年11月  

  • オートエンコーダを用いた時系列解析のための高自由度な面的点過程モデル

    洪 秀俊, 八谷 大岳

    第23回情報論的学習理論ワークショップ  2020年11月  

  • Exchangeable Deep Neural Networks for Set-to-Set Matching and Learning

    Yuki Saito, Takuma Nakamura, Hirotaka Hachiya, Kenji Fukumizu

    第23回 画像の認識・理解シンポジウム(MIRU2020)  2020年08月  

  • Label-CycleGANを用いたドメイン適応のためのCG実写変換

    永吉耕太郎, 八谷大岳

    第23回 画像の認識・理解シンポジウム(MIRU2020)  2020年08月  

  • マルチクロスヒンジ損失を用いた不均衡多クラス分類

    黒良峻平, 八谷大岳, 嶋田宇大, 上田修功

    情報論的学習理論と機械学習研究会(IBISML)  2020年03月   電子情報通信学会

  • 機械学習を用いた南海トラフ巨大地震シミュレータの摩擦パラメータ推定

    山本友, 平原和朗,八谷大岳, 上田修功

    固体地球科学データ同化に関する研究会  2020年02月  

  • info-cycleGANを用いたドメイン適応のためのCG実写変換

    永吉耕太郎, 八谷大岳

    第22回情報論的学習理論ワークショップ  2019年11月   電子情報通信学会

  • ニューラルネットワークを用いた急発達台風予報

    黒良峻平、八 谷大岳、嶋田宇大、上田修功

    日本気象学会2019年度秋季大会  2019年10月   気象学会

  • 機械学習を用いた異なるパラメータの相対強度マップの統合方法の検討

    八谷 大岳, 平原 和朗, 上田 修功

    地震学会秋季大会  2019年09月   地震学会

  • 機械学習とアンサンブルカルマンフィルタのハイブリッド手法を用いた南海トラフ巨大地震シミュレータの摩擦パラメータ推定

    山本 友, 平原 和朗, 八谷 大岳, 高橋 温志, 上田 修功

    地震学会秋季大会  2019年09月   地震学会

  • Triple GANs with adversarial disturbances for discriminative anomaly detection

    Hirotaka Hachiya

    情報論的学習理論と機械学習研究会(IBISML2019-4)  2019年06月   電子情報通信学会

  • 埋込み機械学習による 長周期波形からの広帯域地震動合成

    岡崎 智久、八谷 大岳、上田 修功、岩城 麻子、前田 宜浩、藤原 広行

    日本地球惑星科学連合2019年大会(JpGU2019)  2019年05月  

  • ニューラルネットを用いた逆埋め込み関数の近似と、その文書データ分布の解釈への応用

    溝渕湧也, 八谷大岳

    ニューロコンピューティング研究会  2019年03月   電子情報通信学会

  • 信頼度重み付きクラスタリングによる2次元測距センサの距離推定の頑健化

    射手矢和真, 八谷大岳, 中村恭之

    第19回計測自動制御学会システムインテグレーション部門講演会  2018年12月   計測自動制御学会

  • 2.5D+Orientationアンカーによる物体の距離と向きの推定

    佐々木寛史, 八谷大岳

    第19回計測自動制御学会システムインテグレーション部門講演会  2018年12月   計測自動制御学会

  • Training Discriminative Model for Anomaly Detection through Generative Adversarial Network

    Hirotaka Hachiya

    第21回情報論的学習理論ワークショップ(IBIS2018)  2018年11月   電子情報通信学会

  • Laser variational autoencoder for map construction and self-localization

    Shohei Wakita, Takayuki Nakamura, Hirotaka Hachiya

    IEEE International Conference on Systems, Man, and Cybernetics  2018年10月   IEEE

     概要を見る

    In this paper, we propose a novel method ”laserVAE” for learning feature descriptors of scan data from a 2D LIDAR, which are suitable for self-localization of a mobile robot in an environment. Our laserVAE is an enhanced version of variational autoencoder, which is tuned up for managing step-edges in scan data. Through experiments in a real environment, we demonstrate the effectiveness of the proposed method.

  • 機械学習を用いた広帯域地震動合成の試み

    岡﨑智久、八谷大岳、前田宜浩、岩城麻子、藤原広行、上田修功

    地震学会2018年度秋季大会  2018年10月   地震学会

  • オートエンコーダを用いた環境地図の特徴表現と自己位置推定

    脇田翔平、中村恭之、八谷大岳

    ロボティクス・メカトロニクス講演会  2018年06月   日本機械学会ロボティクス・メカトロニクス部門

     概要を見る

    In this paper, we propose a novel method ”laserVAE” for learning feature descriptors of scan data from a 2D LIDAR, which are suitable for self-localization of a mobile robot in an environment. Our laserVAE is an enhanced version of variational autoencoder, which is tuned up for managing step-edges in scan data. Through experiments in a real environment, we demonstrate the effectiveness of the proposed method.

  • 自由領域制限による経路教示と経路計画のハイブリッド自律走行

    野村雅也、中村恭之 、 八谷大岳

    第23回ロボティクスシンポジア  2018年03月   計測自動制御学会、日本ロボット学会、日本機械学会

     概要を見る

    屋外環境でロボットをロバストに自律走行させるための、経路教示と経路計画を状況により切り替えるハイブリッド自律走行方法を提案

  • 3Dアンカーによる距離推定とロボットナビゲーションへの応用

    八谷大岳、斎藤侑輝、射手矢和真、野村雅也、中村恭之

    第23回ロボティクスシンポジア  2018年03月   計測自動制御学会、日本ロボット学会、日本機械学会

     概要を見る

    単眼カメラ画像から特定物体の距離を推定するディープラーニング方法の提案とロボットナビゲーションへの応用

  • 透視投影アンカーを用いた特定物体の検出および距離推定

    八谷大岳、斎藤侑輝、射手矢和真、中村恭之

    第18回システムインテグレーション部門講演会  2017年12月   計測自動制御学会

     概要を見る

    単眼カメラ画像から特定物体の距離を推定するディープラーニング方法の提案

  • 経路教示と経路計画のハイブリッド自律走行

    八谷大岳、野村雅也、脇田翔平、射手矢和真、中村恭之

    つくばチャレンジ2017参加レポート集  2017年  

     概要を見る

    つくばチャレンジ2017にて、1kmの自律走行(マイルストーン2)を達成したロボットナビゲーション技術の解説

  • ディープラーニングによる特定人物検出と距離推定

    八谷大岳、野村雅也、脇田翔平、射手矢和真、中村恭之

    つくばチャレンジ2017参加レポート集  2017年  

     概要を見る

    つくばチャレンジ2017の特定人物探索を題材に開発したディープラーニングを用いた単眼カメラ画像からの距離推定技術の解説

  • NSH: Normality Sensitive Hashing for Anomaly Detection

    Hirotaka Hachiya, Masakazu Matsugu

    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW)  2013年   IEEE

     概要を見る

    Locality sensitive hashing (LSH) is a computationally efficient alternative to the distance based anomaly detection. The main advantages of LSH lie in constant detection time, low memory requirement, and simple implementation. However, since the metric of distance in LSHs does not consider the property of normal training data, a naive use of existing LSHs would not perform well. In this paper, we propose a new hashing scheme so that hash functions are selected dependently on the properties of the normal training data for reliable anomaly detection. The distance metric of the proposed method, called NSH (Normality Sensitive Hashing) is theoretically interpreted in terms of the region of normal training data and its effectiveness is demonstrated through experiments on real-world data. Our results are favorably comparable to state-of-the arts with the low-level features.

  • Feature Selection via l₁-Penalized Squared-Loss Mutual Information (情報論的学習理論と機械学習)

    JITKRITTUM Wittawat, HACHIYA Hirotaka, SUGIYAMA Masashi

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2012年03月05日   一般社団法人電子情報通信学会

     概要を見る

    Feature selection is a technique to screen out less important features. Many existing supervised feature selection algorithms use redundancy and relevancy as the main criteria to select features. However, feature interaction, potentially a key characteristic in real-world problems, has not received much attention. As an attempt to take feature interaction into account, we propose l_1-LSMI, an l_1-regularization based algorithm that maximizes a squared-loss variant of mutual information between selected features and outputs. Numerical results show that l_1-LSMI performs well in handling redundancy, detecting non-linear dependency, and considering feature interaction.

  • Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)

    ZHAO Tingting, HACHIYA Hirotaka, SUGIYAMA Masashi

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2012年03月05日   一般社団法人電子情報通信学会

     概要を見る

    The policy gradient approach is a flexible and powerful reinforcement learning method particularly for problems with continuous actions such as robot control. A common challenge in this scenario is how to stabilize policy gradient estimates for reliable policy updates. In this paper, we combine the following three ideas and give a highly stable and practical policy gradient method: (a) the policy gradients with parameter based exploration, which is a recently proposed policy search method with high stability, (b) an importance sampling technique, which allows us to reuse previously gathered data in an unbiased way, and (c) an optimal baseline, which minimizes the variance of gradient estimates with their unbiasedness being maintained. For the proposed method, we give theoretical analysis of the variance of gradient estimates and show its usefulness through experiments.

  • Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifier (情報論的学習理論と機械学習)

    NAM Hyunha, HACHIYA Hirotaka, SUGIYAMA Masashi

    電子情報通信学会技術研究報告 : 信学技報  2011年11月09日   一般社団法人電子情報通信学会

     概要を見る

    Multi-label classification allows a sample to belong to multiple classes simultaneously, which is often the case in real-world applications such as audio tagging, image annotation, video search, and text mining. In such a multi-label scenario, taking into account correlation between multiple labels can boost the classification accuracy. However, this in turn makes classifier training more challenging because handling multiple labels tends to induce a high-dimensional optimization problem. In this paper, we propose a highly scalable multi-label classifier based on a computationally efficient classification algorithm called the least-squares probabilistic classifier. Through experiments, we show the usefulness of our proposed method.

  • Relative Density-Ratio Estimation for Robust Distribution Comparison (情報論的学習理論と機械学習)

    YAMADA Makoto, SUZUKI Taiji, KANAMORI Takafumi, HACHIYA Hirotaka, SUGIYAMA Masashi

    電子情報通信学会技術研究報告 : 信学技報  2011年11月09日   一般社団法人電子情報通信学会

     概要を見る

    Divergence estimators based on direct approximation of density-ratios without going through separate approximation of numerator and denominator densities have been successfully applied to machine learning tasks that involve distribution comparison such as outlier detection, transfer learning, and two-sample homogeneity test. However, since density-ratio functions often possess high fluctuation, divergence estimation is still a challenging task in practice. In this paper, we propose to use relative divergences for distribution comparison, which involves approximation of relative density-ratios. Since relative density-ratios are always smoother than corresponding ordinary density-ratios, our proposed method is favorable in terms of the non-parametric convergence speed. Furthermore, we show that the proposed divergence estimator has asymptotic variance independent of the model complexity under a parametric setup, implying that the proposed estimator hardly overfits even with complex models. Through experiments, we demonstrate the usefulness of the proposed approach.

  • Modified Newton Approach to Policy Search (情報論的学習理論と機械学習)

    HACHIYA Hirotaka, MORIMURA Tetsuro, MAKINO Takaki, SUGIYAMA Masashi

    電子情報通信学会技術研究報告 : 信学技報  2011年11月09日   一般社団法人電子情報通信学会

     概要を見る

    The natural policy gradient method was shown to be a useful approach to policy search in reinforcement learning. However, its potential weakness is that information on returns is not reflected in the metric of natural gradients, implying that it is not adaptive to data and thus less flexible. To overcome this, we propose to use Newton's method which uses the Hessian of the expected return as a metric. However, the naive implementation of Newton's method does not guarantee the Hessian to be negative definite, which causes instability on policy updates. To cope with this problem, we propose an adaptive scheme to keep the Hessian nonnegative. We demonstrate the effectiveness of our proposed method in standard reinforcement learning tasks.

  • Artist agent A[2]: stroke painterly rendering based on reinforcement learning (パターン認識・メディア理解)

    Xie Ning, Hachiya Hirotaka, Sugiyama Masashi

    電子情報通信学会技術研究報告. PRMU, パターン認識・メディア理解  2011年08月29日   一般社団法人電子情報通信学会

     概要を見る

    Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.

  • Artist agent A[2]: stroke painterly rendering based on reinforcement learning (情報論的学習理論と機械学習)

    Xie Ning, Hachiya Hirotaka, Sugiyama Masashi

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2011年08月29日   一般社団法人電子情報通信学会

     概要を見る

    Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.

  • Artist Agent A2: Stroke Painterly Rendering Based on Reinforcement Learning

    Ning Xie, Hirotaka Hachiya, Masashi Sugiyama

    研究報告コンピュータビジョンとイメージメディア(CVIM)  2011年08月29日  

     概要を見る

    Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.Oriental ink painting, called Sumi-e, is one of the most appealing painting styles that has attracted artists around the world. The major challenges in computer-based Sumi-e simulation are to abstract complex scene information and draw smooth and natural brush strokes. To automatically find such strokes, we propose to model the brush as a reinforcement-learning (RL) agent, and learn desired brush-trajectories by maximizing the sum of rewards in the policy search framework. We also provide elaborate design of state space, action space, and a reward function tailored for a Sumi-e agent. The effectiveness of our proposed approach is demonstrated through simulated Sumi-e experiments.

  • Information-maximization clustering: analytic solution and model selection (情報論的学習理論と機械学習)

    Sugiyama Masashi, Yamada Makoto, Kimura Manabu, HACHIYA Hirotaka

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2011年03月21日   一般社団法人電子情報通信学会

     概要を見る

    A recently-proposed information-maximization clustering method (Gomes et al., NIPS2010) learns a kernel logistic regression classifier in an unsupervised manner so that mutual information between feature vectors and cluster assignments is maximized. A notable advantage of this approach is that it only involves continuous optimization of a logistic model, which is substantially easier than discrete optimization of cluster assignments. However, this method still suffers from two weaknesses: (i) manual tuning of kernel parameters is necessary, and (ii) finding a good local optimal solution is not straightforward due to the strong non-convexity of logistic-regression learning. In this paper, we first show that the kernel parameters can be systematically optimized by maximizing mutual information estimates. We then propose an alternative information-maximization clustering approach using a squared-loss variant of mutual information. This novel approach allows us to obtain clustering solutions analytically in a computationally very efficient way. Through experiments, we demonstrate the usefulness of the proposed approaches.

  • 動的計画法によるリターン分布推定

    森村 哲郎, 杉山 将, 鹿島 久嗣, 八谷 大岳, 田中 利幸

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2010年10月28日   一般社団法人電子情報通信学会

     概要を見る

    標準的な強化学習の枠組みでは, Bellman方程式を用いてリターン(割引報酬和)の期待値を推定し,意思決定を行う.近年,我々はこの枠組みを拡張し,分布Bellman方程式を用いてリターンの分布を推定する方法を提案した.これにより,バリュー・アット・リスクなどのリスクを考慮した任意の指標に基づく意思決定が行えるようになったが,分布Bellman方程式を用いた手法の収束性などの理論的性質は末だ解明されていない.本論文では,分布Bellman方程式を動的計画法によって解いた場合,解が初期近似分布に依存せず常に真のリターン分布に収束することを証明する.さらに,リターン分布推定量のモーメントの収束率も示す.最後に,得られた理論結果から,既存のリターン分布推定法の改善方法を提案し,数値実験からその有効性を示す.

  • New feature selection method for reinforcement learning: conditional mutual information reveals implicit state-reward dependency (情報論的学習理論と機械学習)

    Hachiya Hirotaka, Sugiyama Masashi

    電子情報通信学会技術研究報告. IBISML, 情報論的学習理論と機械学習 = IEICE technical report. IBISML, Information-based induction sciences and machine learning  2010年06月07日   一般社団法人電子情報通信学会

     概要を見る

    Model-free reinforcement learning (RL) is a machine learning approach to decision making in unknown environment. However, real-world RL tasks often involve high-dimensional state space, and then standard RL methods do not perform well. In this paper, we propose a new feature selection framework for coping with high dimensionality. Our proposed framework adopts conditional mutual information between state and return sequences as a feature selection criterion, allowing the evaluation of implicit state-reward dependency. The conditional mutual information is approximated by a least-squares method, which results in a computationally efficient feature selection procedure. The usefulness of the proposed method is demonstrated on simulated mobile-robot navigation experiments.

  • Improving Model-based Reinforcement Learning with Multitask Learning (数理モデル化と問題解決(MPS) Vol.2009-MPS-76)

    SIMM JAAK, SUGIYAMA MASASHI, HACHIYA HIROTAKA

    情報処理学会研究報告  2010年02月   情報処理学会

  • Improving Model-based Reinforcement Learning with Multitask Learning (バイオ情報学(BIO) Vol.2009-BIO-19)

    Jaak Simm, Masashi Sugiyama, Hirotaka Hachiya

    研究報告バイオ情報学(BIO)  2009年12月10日   情報処理学会

     概要を見る

    We introduce an extension to standard reinforcement learning setting called observational RL (ORL) where additional observational information is available to the agent. This allows the agent to learn the system dynamics with fewer data samples, which is an essential feature for practical applications of RL methods. We show that ORL can be formulated as a multitask learning problem. A similarity-based and a component-based multitask learning methods are proposed for learning the transition probabilities of the ORL problem. The effectiveness of the proposed methods is evaluated in experiments of grid world and object lifting tasks.We introduce an extension to standard reinforcement learning setting called observational RL (ORL) where additional observational information is available to the agent. This allows the agent to learn the system dynamics with fewer data samples, which is an essential feature for practical applications of RL methods. We show that ORL can be formulated as a multitask learning problem. A similarity-based and a component-based multitask learning methods are proposed for learning the transition probabilities of the ORL problem. The effectiveness of the proposed methods is evaluated in experiments of grid world and object lifting tasks.

  • Conditional Density Estimation Based on Density Ratio Estimation

    Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara

    研究報告バイオ情報学(BIO)  2009年12月10日  

     概要を見る

    Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation.Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation.

  • Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)

    Akiyama Takayuki, Hachiya Hirotaka, Sugiyama Masashi

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング  2009年03月04日   一般社団法人電子情報通信学会

     概要を見る

    Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularly useful when the sampling cost of immediate rewards is high. The proposed method combined with LSPI is called active policy iteration (API). Through simulations we demonstrate the usefulness of API.

  • Adaptive importance sampling with automatic model selection in reward weighted regression (ニューロコンピューティング)

    Hachiya Hirotaka, Peters Jan, Sugiyama Masashi

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング  2009年03月04日   一般社団法人電子情報通信学会

     概要を見る

    Direct policy search is a promising reinforcement learning framework in particular for controlling in continuous, high-dimensional systems such as anthropomorphic robot. Policy search often requires a large number of samples for obtaining a stable policy update estimator due to its high flexibility. However, this is prohibitive when the sampling cost is expensive. In this paper, we extend an EM-based policy search method so that previously collected samples can be efficiently reused. The usefulness of the proposed method, called Reward-weighted Regression with sample Reuse (R^3), is demonstrated through a toy example.

  • Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)

    Hachiya Hirotaka, Akiyama Takayuki, Sugiyama Masashi

    電子情報通信学会技術研究報告. NC, ニューロコンピューティング  2007年12月15日   一般社団法人電子情報通信学会

     概要を見る

    Off-policy reinforcement learning is aimed at efficiently reusing data samples gathered in the past. A common approach is to use importance sampling techniques for compensating for the bias caused by the difference between data-collecting policies and the target policy. However, existing off-policy methods do not often take the variance of value function estimators explicitly into account and therefore their performance tends to be unstable. To cope with this problem, we propose using an adaptive importance sampling technique which allows us to actively control the trade-off between bias and variance. We further provide a method for optimally determining the trade-off parameter based on a statistical machine learning theory.

  • Robot Control by Least-Squares Policy Iteration with Geodesic Gaussian Kernels

    Hachiya Hirotaka, Sugiyama Masashi

    人工知能学会全国大会論文集  2007年   人工知能学会

▼全件表示

特許

  • Information processing apparatus, information processing method, and non-transitory computer-readable storage medium

    特許番号: 11468290

    登録日: 2022年10月11日  米国

    出願日: 2017年06月28日 ( 15/635,302 )  

    発明者: Hirotaka Hachiya 

  • Surveillance apparatus, surveillance method, and storage medium

    特許番号: 11363241

    登録日: 2022年06月14日  米国

    出願日: 2019年11月05日 ( 16/675,090 )  

    発明者: Shunsuke Sato , Hirotaka Hachiya , Yusuke Mitarai 

  • 情報処理装置、情報処理方法、及びプログラム

    特許番号: 特許第6976731号

    登録日: 2021年12月08日 

    出願日: 2017年06月13日 ( 特願2017-115995 )  

    発明者: 塚本 健二 , 八谷 大岳 , 森 克彦  出願人: キヤノン株式会社

  • 情報処理装置、情報処理方法

    特許番号: 特許第6948851号

    登録日: 2021年10月13日 

    出願日: 2017年06月16日 ( 特願2017-118841 )  

    発明者: 八谷 大岳  出願人: キヤノン株式会社

  • 情報処理装置、情報処理方法、及びプログラ

    特許番号: 特許第6945999号

    登録日: 2021年10月06日 

    出願日: 2016年12月22日 ( 特願2016-249292 )  

    発明者: 八谷 大岳  出願人: キヤノン株式会社

  • 認識学習装置、認識学習方法及びプログラム

    特許番号: 特許第6900190号

    登録日: 2021年06月18日 

    出願日: 2016年12月28日 ( 特願2016-256060 )  

    発明者: 八谷 大岳 , 真継 優和  出願人: キヤノン株式会社

  • 監視装置、監視方法、コンピュータプログラム、及び記憶媒体

    特許番号: 特許第6766009号

    登録日: 2020年09月18日 

    出願日: 2017年05月09日 ( 特願2017-093337 )  

    発明者: 佐藤 俊介 , 八谷 大岳 , 御手洗 裕輔 

  • 情報処理装置、情報処理方法、プログラム

    特許番号: 特許第6590477号

    登録日: 2019年09月27日 

    出願日: 2014年11月28日 ( 特願2014-242462 )  

    発明者: 八谷 大岳  出願人: キヤノン株式会社

  • 異常検知方法、異常検知装置、及びプログラム

    特許番号: 特許6第525542号

    登録日: 2019年05月17日 

    出願日: 2014年10月17日 ( 特願2014-213182 )  

    発明者: 塚本 健二 , 八谷 大岳 , 森 克彦  出願人: キヤノン株式会社

  • Recognition training apparatus, recognition training method, and storage medium

    特許番号: 10217027

    登録日: 2019年02月26日  米国

    出願日: 2017年06月13日 ( 15/406,391 )  

    発明者: Hirotaka Hachiya , Masakazu Matsugu 

  • 識別装置及びデータ関係生成装置

    特許番号: 特許第6478650号

    登録日: 2019年02月15日 

    出願日: 2015年01月16日 ( 特願2015-006901 )  

    発明者: 八谷 大岳  出願人: キヤノン株式会社

  • Information processing apparatus and information processing method

    特許番号: 10013628

    登録日: 2018年06月03日 

    出願日: 2015年03月19日 ( 14/662,488 )  

    発明者: Masami Kato , Hirotaka Hachiya 

  • ハッシュ値生成装置、システム、判定方法、プログラム、記憶媒体

    特許番号: 特許第6164899号

    登録日: 2017年06月30日 

    出願日: 2013年04月05日 ( 特願2013-079445 )  

    発明者: 八谷 大岳  出願人: キヤノン株式会社

▼全件表示

研究交流

  • Tech Connect KANSAI

    2019年01月
     
  • 和歌山大学/鳥取大学合同ビジネス連携交流会

    2018年10月
     
  • 第3回 和歌山大学・和歌山県工業技術センター研究者交流会

    2018年03月
     
  • 工学研究シーズ合同発表会

    2017年10月
     

科学研究費

  • 強震動予測・地震ハザード解析における不確かさの定量評価に向けた研究

    2023年04月
    -
    2026年03月
     

    基盤研究(A)  分担

  • Attention機構に基づく異種集合マッチング方式の分析と新方式の提案

    2023年04月
    -
    2026年03月
     

    基盤研究(C)  代表

  • 深層学習と統計モデリングの融合による自然現象予報のための画像変換方法の検討

    2020年04月
    -
    2023年03月
     

    基盤研究(C)  代表

  • 観測データと理論データの融合に基づくデータ駆動型強振動予測モデルの開発

    2020年04月
    -
    2023年03月
     

    基盤研究(A)  分担

  • 環境変動にロバストなディープニューラルネットのための学習データ生成方法の研究

    2017年10月
    -
    2019年03月
     

    研究活動スタート支援  代表

公開講座等の講師、学術雑誌等の査読、メディア出演等

  • わかやま地域情報化フォーラム

    2024年01月23日

    和歌山県情報化推進協議会

     詳細を見る

    地方自治体、生成AI

    トークセッション出演

  • 技術アドバイザー

    2023年07月01日
    -
    2024年06月30日

    株式会社ZOZO NEXT

     詳細を見る

    助言・指導

    ZOZO Researchに関する技術アドバイザー業務

  • 講演講師

    2022年12月16日

    一般社団法人 電子情報通信学会 関西支部

     詳細を見る

    和歌山高専の学生

    12月16日に和歌山工業高等専門学校にて開催する「学生のための講演会」において、「機械学習」について講演する。

  • 技術相談役

    2022年04月01日
    -
    2022年06月30日

    株式会社QIS

     詳細を見る

    助言・指導

    データ分析、画像認識に関する指導・アドバイス・技術相談および調査

  • 査読

    2021年10月

    計測自動制御学会

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    計測自動制御学会論文集の査読

  • 技術アドバイザー

    2020年04月01日
    -
    継続中

    株式会社 サイバーリンクス

     詳細を見る

    助言・指導

    機械学習コンサルティングの助言及び指導

  • 客員研究員

    2020年04月01日
    -
    継続中

    国立研究開発法人理化学研究所

     詳細を見る

    客員研究員

    各種センサーデータの解析及び防災・減災シミュレータの研究開発

  • Reviewer

    2020年02月
    -
    2020年04月

    International Conference on Machine Learning

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Reviewer

  • 講師

    2019年11月

    和歌山県立向陽高等学校・中学校 和元年度向陽SSH中高合同ゼミ(実験講座)

     詳細を見る

    講演講師等

    講師,任期:2019年11月~

  • 高度IT研修

    2019年05月

    日比谷コンピュータシステム

     詳細を見る

    公開講座・講演会の企画・講師等

    機械学習の概要、応用例およびPythonを用いた機械学習の実装演習,日付:2019.5.29

  • 講師

    2019年05月

    株式会社HCSホールディングス

     詳細を見る

    講演講師等

    講師,任期:2019年5月~

  • SSH中高合同ゼミ

    2019年04月

    その他

     詳細を見る

    小・中・高校生を対象とした学部体験入学・出張講座等

    和歌山県立向陽高校にて、機械学習入門の出張講義を実施,日付:2019年11月8日

  • AI技術講演会

    2019年03月

    和歌山県工業技術センター

     詳細を見る

    公開講座・講演会の企画・講師等

    最先端の機械学習とその応用,日付:2019.3.5

  • 講師

    2019年03月

    和歌山県工業技術センター

     詳細を見る

    講演講師等

    講師,任期:2019年3月~

  • 若手研究者研究成果発表会

    2018年12月

    和歌山情報サービス産業協会、わかやま産業振興財団

     詳細を見る

    公開講座・講演会の企画・講師等

    ディープラーニングを用いたセンサ ーデータの圧縮と変換,日付:2018.12.13

  • Reviewer

    2018年06月
    -
    2018年07月

    Conference on Neural Information Processing Systems

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Reviewer

  • Reviewer

    2018年04月
    -
    2018年05月

    IEEE International Conference on System, Man, and Cybernetics

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Reviewer

  • Program Committee

    2018年01月
    -
    2018年04月

    International Conference on Machine Learning

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Program Committee

  • 第26回わかやまテクノビジネスフェア

    2017年11月

    公益財団法人わかやま産業振興財団

     詳細を見る

    公開講座・講演会の企画・講師等

    機械学習の研究に関する講演およびポスター発表,日付:2017.11.10

  • Reviewer

    2017年10月
    -
    2017年11月

    IEEE International Conference on Robotics and Automation

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Reviewer

  • Program Committee

    2017年09月
    -
    2017年10月

    Thirty-Second AAAI Conference on Artificial Intelligence

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Program Committee

  • カンボジア王立プノンペン大学の学生・教員の和歌山大学訪問

    2017年08月

    大阪府立大学現代システム科学・さくらサイエンスプラン

     詳細を見る

    公開講座・講演会の企画・講師等

    機械学習の研究に関する講演,日付:2017.8.10

  • Reviewer

    2017年06月
    -
    2017年07月

    Conference on Neural Information Processing Systems

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Reviewer

  • Associate Editor

    2017年02月
    -
    2017年05月

    IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017)

     詳細を見る

    学術雑誌等の編集委員・査読・審査員等

    Associate Editor

▼全件表示

学協会、政府、自治体等の公的委員

  • プログラム委員会幹事補

    2022年06月01日
    -
    2023年03月31日
     

    第28回ロボティクスシンポジア

     詳細を見る

    ロボット、システム、メカトロニクス、ロボティクス

    プログラム委員会の作業全般

  • 和歌山県商工観光労働部所管公募型プロポーザル方式等事業者選定委員会委員

    2022年05月16日
    -
    2023年06月30日
     

    和歌山県

     詳細を見る

    デジタル技術講習

    和歌山県令和4年度デジタル技術講習(データ・クラウド)、(AI・IoT)企画運営業務の事業者選定に当たり、専門的知見を活かし候補者の提案内容を審査いただく。

  • わかやま地域活性化雇用創造プロジェクト事業審査委員会委員

    2021年05月03日
    -
    2022年03月31日
     

    公益財団法人わかやま産業振興財団

     詳細を見る

    雇用創造 地域活性化

    わかやま地域活性化雇用創造プロジェクト事業費補助金「先端技術導入支援事業」の県内事業者からの申請書の審査

  • 顧問・機械学習コンサルティング

    2019年08月
    -
    2020年03月
     

    株式会社サイバーリンクス

     詳細を見る

    国や地方自治体、他大学・研究機関等での委員

    顧問・機械学習コンサルティング,任期:2019年8月~2020年3月

  • 客員研究員

    2019年04月
    -
    2020年03月
     

    国立研究開発法人理化学研究所

     詳細を見る

    国や地方自治体、他大学・研究機関等での委員

    客員研究員,任期:2019年4月~2020年3月

  • 客員研究員

    2018年04月
    -
    2019年03月
     

    国立研究開発法人理化学研究所

     詳細を見る

    国や地方自治体、他大学・研究機関等での委員

    客員研究員,任期:2018年4月~2019年3月

  • 客員研究員

    2018年04月
    -
    2019年03月
     

    理化学研究所

     詳細を見る

    学協会、政府、自治体等の公的委員

    防災科学チームにおいて、各種センサーデータの解析および 防災・減災シミュレータの研究開発

  • ロボカップジュニアポスター審査員

    2018年04月
    -
    2019年03月
     

    RoboCupJunior Japan Association

     詳細を見る

    学協会、政府、自治体等の公的委員

    ロボカップジュニアポスター審査

  • 客員研究員

    2017年04月
    -
    2018年03月
     

    理化学研究所

     詳細を見る

    学協会、政府、自治体等の公的委員

    防災科学チームにおいて、各種センサーデータの解析および 防災・減災シミュレータの研究開発

▼全件表示

その他の社会活動

  • 日本酒AI専門技術研究会 会長

    2020年04月
    -
    2021年03月

    日本酒AI専門技術研究会

     詳細を見る

    産業界、行政諸機関等と行った共同研究、新技術創出、コンサルティング等

    和歌山県内の醸造メーカー、IT企業、および和歌山工業技術センターが参画する日本酒AI専門技術研究会を立ち上げた。AIなど情報技術の日本酒の製造での活用に向けて、県内外の専門家および研究者を招待し、勉強会を4回開催した。