Published Papers - HACHIYA Hirotaka
-
Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems
Jaak Simm, Masashi Sugiyama, Hirotaka Hachiya
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG ) E95D ( 10 ) 2426 - 2437 2012.10 [Refereed]
-
Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition
Hirotaka Hachiya, Masashi Sugiyama, Naonori Ueda
NEUROCOMPUTING ( ELSEVIER SCIENCE BV ) 80 93 - 101 2012.03 [Refereed]
-
Analysis and improvement of policy gradient estimation
Tingting Zhao, Hirotaka Hachiya, Gang Niu, Masashi Sugiyama
NEURAL NETWORKS ( PERGAMON-ELSEVIER SCIENCE LTD ) 26 118 - 129 2012.02 [Refereed]
-
COMPUTATIONALLY EFFICIENT MULTI-LABEL CLASSIFICATION BY LEAST-SQUARES PROBABILISTIC CLASSIFIER
Hyun Ha Nam, Hirotaka Hachiya, Masashi Sugiyama
2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) ( IEEE ) 2077 - 2080 2012 [Refereed]
-
Reward-Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning
Hirotaka Hachiya, Jan Peters, Masashi Sugiyama
NEURAL COMPUTATION ( MIT PRESS ) 23 ( 11 ) 2798 - 2832 2011.11 [Refereed]
-
On information-maximization clustering: Tuning parameter selection and analytic solution
Masashi Sugiyama, Makoto Yamada, Manabu Kimura, Hirotaka Hachiya
Proceedings of the 28th International Conference on Machine Learning, ICML 2011 65 - 72 2011 [Refereed]
-
Least absolute policy iteration - A robust approach to value function approximation
Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Mortmura
IEICE Transactions on Information and Systems E93-D ( 9 ) 2555 - 2565 2010.09 [Refereed]
-
Least Absolute Policy Iteration-A Robust Approach to Value Function Approximation
Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Morimura
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS ( IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG ) E93D ( 9 ) 2555 - 2565 2010.09 [Refereed]
-
Efficient exploration through active learning for value function approximation in reinforcement learning
Takayuki Akiyama, Hirotaka Hachiya, Masashi Sugiyama
NEURAL NETWORKS ( PERGAMON-ELSEVIER SCIENCE LTD ) 23 ( 5 ) 639 - 648 2010.06 [Refereed]
-
Parametric return density estimation for Reinforcement Learning
Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010 368 - 375 2010 [Refereed]
-
Least-squares conditional density estimation
Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara
IEICE Transactions on Information and Systems E93-D ( 3 ) 583 - 594 2010 [Refereed]
-
Nonparametric return distribution approximation for reinforcement learning
Tetsuro Morimurat, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, Toshiyuki Tanaka
ICML 2010 - Proceedings, 27th International Conference on Machine Learning 799 - 806 2010 [Refereed]
-
Conditional density estimation via least-squares density ratio estimation
Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, Daisuke Okanohara
Journal of Machine Learning Research 9 781 - 788 2010 [Refereed]
-
Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information
Hirotaka Hachiya, Masashi Sugiyama
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2010 ( SPRINGER-VERLAG BERLIN ) 6321 474 - 489 2010 [Refereed]
-
Adaptive importance sampling for value function approximation in off-policy reinforcement learning
Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiayma, Jan Peters
Neural Networks 22 ( 10 ) 1399 - 1410 2009.12 [Refereed]
-
Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning
Takayuki Akiyama, Hirotaka Hachiya, Masashi Sugiyama
21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS ( IJCAI-INT JOINT CONF ARTIF INTELL ) 980 - 985 2009 [Refereed]
-
Efficient Data Reuse in Value Function Approximation.
Hirotaka Hachiya, Takayuki Akiyama, Masashi Sugiyama, Jan Peters
ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING ( IEEE ) 8 - + 2009 [Refereed]
-
Efficient Sample Reuse in EM-Based Policy Search
Hirotaka Hachiya, Jan Peters, Masashi Sugiyama
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, ECML PKDD 2009 ( SPRINGER-VERLAG BERLIN ) 5781 469 - + 2009 [Refereed]
-
Least Absolute Policy Iteration for Robust Value Function Approximation
Masashi Sugiyama, Hirotaka Hachiya, Hisashi Kashima, Tetsuro Morimura
ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7 ( IEEE ) 699 - + 2009 [Refereed]
-
Geodesic Gaussian kernels for value function approximation
Masashi Sugiyama, Hirotaka Hachiya, Christopher Towell, Sethu Vijayakumar
AUTONOMOUS ROBOTS ( SPRINGER ) 25 ( 3 ) 287 - 304 2008.10 [Refereed]