Updated on 2024/12/13

写真a

 
KAWAKAMI Tomohiro
 
Name of department
Faculty of Education, Mathematics Education
Job title
Associate Professor
Mail Address
E-mail address
Homepage
External link

Education

  • Osaka University   Graduate School, Division of Natural Science  

  • Osaka University   理学研究科   数学  

  • Osaka University   Faculty of Science  

  • Osaka University   School of Science   Department of Mathematics  

Degree

  • Master of Science

  • Doctor of Science

Association Memberships

  • 2020.01

    The american mathematical society, life member

  • 日本数学会

  • 日本数学教育学会

Research Areas

  • Natural sciences / Basic mathematics / モデル理論

  • Natural sciences / Basic mathematics / 順序極小構造

  • Natural sciences / Basic mathematics / 局所順序極小構造

  • Natural sciences / Basic mathematics / 実代数学幾何学

  • Natural sciences / Basic mathematics / d-minimal structure

  • Natural sciences / Geometry

▼display all

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research)

  • 2023   Seminar of Mathematical EducationA4   Specialized Subjects

  • 2023   Seminar of Mathematical EducationA3   Specialized Subjects

  • 2023   Seminar of Mathematical EducationA2   Specialized Subjects

  • 2023   Seminar of Mathematical EducationA1   Specialized Subjects

  • 2023   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2023   Introduction to Geometry   Specialized Subjects

  • 2023   Applied Analysis   Specialized Subjects

  • 2023   Introduction to Differential Manifolds A   Specialized Subjects

  • 2023   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2023   Kyosyoku jissen ensyuu   Specialized Subjects

  • 2023   Calculus in Higher Dimensions   Specialized Subjects

  • 2022   Kyosyoku jissen ensyuu   Specialized Subjects

  • 2022   Seminar of Mathematical EducationA4   Specialized Subjects

  • 2022   Seminar of Mathematical EducationA3   Specialized Subjects

  • 2022   Seminar of Mathematical EducationA2   Specialized Subjects

  • 2022   Seminar of Mathematical EducationA1   Specialized Subjects

  • 2022   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2022   Introduction to Geometry   Specialized Subjects

  • 2022   Applied Analysis   Specialized Subjects

  • 2022   Introduction to Differential Manifolds A   Specialized Subjects

  • 2022   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2022   Calculus in Higher Dimensions   Specialized Subjects

  • 2021   Seminar of Mathematical Education D   Specialized Subjects

  • 2021   Seminar of Mathematical Education C   Specialized Subjects

  • 2021   Seminar of Mathmatical Education   Specialized Subjects

  • 2021   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2021   Introduction to Geometry   Specialized Subjects

  • 2021   Applied Analysis   Specialized Subjects

  • 2021   Seminar of Mathmatical Education B   Specialized Subjects

  • 2021   Seminar of Mathmatical Education A   Specialized Subjects

  • 2021   Introduction to Differential Manifolds A   Specialized Subjects

  • 2021   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2021   Calculus in Higher Dimensions   Specialized Subjects

  • 2021   Kyosyoku jissen ensyuu   Specialized Subjects

  • 2020   Kyosyoku jissen ensyuu   Specialized Subjects

  • 2020   Seminar of Mathematical Education D   Specialized Subjects

  • 2020   Seminar of Mathematical Education C   Specialized Subjects

  • 2020   Seminar of Mathmatical Education   Specialized Subjects

  • 2020   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2020   Introduction to Geometry   Specialized Subjects

  • 2020   Applied Analysis   Specialized Subjects

  • 2020   Seminar of Mathmatical Education B   Specialized Subjects

  • 2020   Seminar of Mathmatical Education A   Specialized Subjects

  • 2020   Introduction to Differential Manifolds A   Specialized Subjects

  • 2020   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2020   Calculus in Higher Dimensions   Specialized Subjects

  • 2019   Seminar of Mathematical Education D   Specialized Subjects

  • 2019   Seminar of Mathematical Education C   Specialized Subjects

  • 2019   Seminar of Mathmatical Education   Specialized Subjects

  • 2019   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2019   Introduction to Geometry   Specialized Subjects

  • 2019   Applied Analysis   Specialized Subjects

  • 2019   Seminar of Mathmatical Education B   Specialized Subjects

  • 2019   Seminar of Mathmatical Education A   Specialized Subjects

  • 2019   Introduction to Differential Manifolds A   Specialized Subjects

  • 2019   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2019   Calculus in Higher Dimensions   Specialized Subjects

  • 2019   NA   Specialized Subjects

  • 2018   NA   Liberal Arts and Sciences Subjects

  • 2018   NA   Specialized Subjects

  • 2018   NA   Specialized Subjects

  • 2018   NA   Specialized Subjects

  • 2018   Seminar of Mathmatical Education   Specialized Subjects

  • 2018   Seminar of Mathmatical Education   Specialized Subjects

  • 2018   Research on Teaching Materials in Arithmetics   Specialized Subjects

  • 2018   Introduction to Geometry   Specialized Subjects

  • 2018   Applied Analysis   Specialized Subjects

  • 2018   Seminar of Mathmatical Education B   Specialized Subjects

  • 2018   Seminar of Mathmatical Education A   Specialized Subjects

  • 2018   Introduction to Differential Manifolds A   Specialized Subjects

  • 2018   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2018   Calculus in Higher Dimensions   Specialized Subjects

  • 2017   Applied Analysis   Specialized Subjects

  • 2017   Introduction to Geometry   Specialized Subjects

  • 2017   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2017   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2017   Introduction to Differential Manifolds A   Specialized Subjects

  • 2017   Applied Analysis   Specialized Subjects

  • 2017   NA   Specialized Subjects

  • 2017   NA   Specialized Subjects

  • 2017   Introduction to Geometry   Specialized Subjects

  • 2017   Applied Analysis   Specialized Subjects

  • 2017   Seminar of Mathmatical Education B   Specialized Subjects

  • 2017   Seminar of Mathmatical Education A   Specialized Subjects

  • 2017   Introduction to Differential Manifolds A   Specialized Subjects

  • 2017   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2017   Mathematics and Code   Liberal Arts and Sciences Subjects

  • 2016   Applied Analysis   Specialized Subjects

  • 2016   Introduction to Geometry   Specialized Subjects

  • 2016   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2016   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2016   Introduction to Differential Manifolds A   Specialized Subjects

  • 2016   Seminar of Mathmatical Education B   Specialized Subjects

  • 2016   Seminar of Mathmatical Education A   Specialized Subjects

  • 2016   NA   Specialized Subjects

  • 2016   Seminar of Mathmatical Education B   Specialized Subjects

  • 2016   Seminar of Mathmatical Education A   Specialized Subjects

  • 2016   NA   Specialized Subjects

  • 2016   Introduction to Geometry   Specialized Subjects

  • 2016   Applied Analysis   Specialized Subjects

  • 2016   Introduction to Differential Manifolds A   Specialized Subjects

  • 2016   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2016   Mathematics and Code   Liberal Arts and Sciences Subjects

  • 2015   NA   Specialized Subjects

  • 2015   NA   Specialized Subjects

  • 2015   Seminar of Mathmatical Education A   Specialized Subjects

  • 2015   Mathematics B   Liberal Arts and Sciences Subjects

  • 2015   Introduction to Differential Manifolds A   Specialized Subjects

  • 2015   Seminar of Mathmatical Education B   Specialized Subjects

  • 2015   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2015   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2015   Applied Analysis   Specialized Subjects

  • 2014   NA   Specialized Subjects

  • 2014   NA   Specialized Subjects

  • 2014   NA   Specialized Subjects

  • 2014   Applied Analysis   Specialized Subjects

  • 2014   Seminar of Mathmatical Education B   Specialized Subjects

  • 2014   Seminar of Mathmatical Education A   Specialized Subjects

  • 2014   Introduction to Differential Manifolds A   Specialized Subjects

  • 2014   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2014   Mathematics B   Liberal Arts and Sciences Subjects

  • 2014   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2013   NA   Specialized Subjects

  • 2013   Applied Analysis   Specialized Subjects

  • 2013   Seminar of Mathmatical Education B   Specialized Subjects

  • 2013   Seminar of Mathmatical Education A   Specialized Subjects

  • 2013   Introduction to Differential Manifolds A   Specialized Subjects

  • 2013   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2013   Mathematics B   Liberal Arts and Sciences Subjects

  • 2013   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2012   NA   Specialized Subjects

  • 2012   NA   Specialized Subjects

  • 2012   NA   Specialized Subjects

  • 2012   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2012   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2012   Seminar of Mathmatical Education B   Specialized Subjects

  • 2012   Mathematical Statistics Science   Specialized Subjects

  • 2012   Introduction to Differential Manifolds A   Specialized Subjects

  • 2012   Seminar of Mathmatical Education A   Specialized Subjects

  • 2012   Mathematics B   Liberal Arts and Sciences Subjects

  • 2012   Seminar of Mathmatical Education A   Specialized Subjects

  • 2012   Mathematics B   Liberal Arts and Sciences Subjects

  • 2012   Introduction to Differential Manifolds A   Specialized Subjects

  • 2012   Mathematical Statistics Science   Specialized Subjects

  • 2012   Seminar of Mathmatical Education B   Specialized Subjects

  • 2012   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2012   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2011   NA   Specialized Subjects

  • 2011   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2011   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2011   Mathematical Statistics Science   Specialized Subjects

  • 2011   Introduction to Differential Manifolds A   Specialized Subjects

  • 2011   Seminar of Mathmatical Education A   Specialized Subjects

  • 2011   Mathematics B   Liberal Arts and Sciences Subjects

  • 2011   Seminar of Mathematical Environments   Specialized Subjects

  • 2011   Seminar of Mathmatical Education A   Specialized Subjects

  • 2011   Introduction to Differential Manifolds B   Specialized Subjects

  • 2011   Mathematics B   Liberal Arts and Sciences Subjects

  • 2011   Seminar of Mathmatical Education B   Specialized Subjects

  • 2011   Seminar of Mathmatical Education A   Specialized Subjects

  • 2011   Introduction to Differential Manifolds B   Specialized Subjects

  • 2011   Introduction to Differential Manifolds A   Specialized Subjects

  • 2011   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2011   NA   Liberal Arts and Sciences Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Liberal Arts and Sciences Subjects

  • 2010   Seminar of Mathmatical Education B   Specialized Subjects

  • 2010   Introduction to Differential Manifolds A   Specialized Subjects

  • 2010   Overall Seminar A   Specialized Subjects

  • 2010   Seminar on Natural Environments (Mathematical Science)   Specialized Subjects

  • 2010   Symmetry in Nature(Group Theory) of Sociology   Specialized Subjects

  • 2009   Seminar of Mathmatical Education B   Specialized Subjects

  • 2009   Seminar of Mathmatical Education A   Specialized Subjects

  • 2009   Seminar on Natural Environments (Mathematical Science)   Specialized Subjects

  • 2009   Overall Seminar B   Specialized Subjects

  • 2009   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2009   Symmetry in Nature(Group Theory) of Sociology   Specialized Subjects

  • 2009   Introduction to Differential Manifolds A   Specialized Subjects

  • 2009   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2008   Seminar of Mathmatical Education B   Specialized Subjects

  • 2008   Linear Algebra Ⅰ   Specialized Subjects

  • 2008   Seminar of Mathmatical Education A   Specialized Subjects

  • 2008   Overall Seminar C   Specialized Subjects

  • 2008   Seminar on Natural Environments (Mathematical Science)   Specialized Subjects

  • 2008   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2008   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2008   Introduction to Differential Manifolds A   Specialized Subjects

  • 2008   Mathematics AⅠ   Liberal Arts and Sciences Subjects

  • 2007   Seminar of Mathmatical Education B   Specialized Subjects

  • 2007   Linear Algebra Ⅰ   Specialized Subjects

  • 2007   Seminar of Mathmatical Education A   Specialized Subjects

  • 2007   Overall Seminar C   Specialized Subjects

  • 2007   Seminar on Natural Environments (Mathematical Science)   Specialized Subjects

  • 2007   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2007   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2007   Introduction to Differential Manifolds A   Specialized Subjects

  • 2007   Mathematics AⅠ   Liberal Arts and Sciences Subjects

  • 2006   Seminar of Mathmatical Education B   Specialized Subjects

  • 2006   NA   Specialized Subjects

  • 2006   Linear Algebra Ⅰ   Specialized Subjects

  • 2006   Seminar of Mathmatical Education A   Specialized Subjects

  • 2006   Seminar on Natural Environments (Mathematical Science)   Specialized Subjects

  • 2006   Introduction to Metric Spaces Technology   Specialized Subjects

  • 2006   Mathematics AⅡ   Liberal Arts and Sciences Subjects

  • 2006   Introduction to Differential Manifolds A   Specialized Subjects

  • 2006   Mathematics AⅠ   Liberal Arts and Sciences Subjects

▼display all

Satellite Courses

  • 2021   NA   Liberal Arts and Sciences Subjects

  • 2020   NA   Liberal Arts and Sciences Subjects

  • 2019   NA   Liberal Arts and Sciences Subjects

  • 2018   NA   Liberal Arts and Sciences Subjects

  • 2017   NA   Liberal Arts and Sciences Subjects

  • 2016   NA   Liberal Arts and Sciences Subjects

▼display all

Classes

  • 2019   Exercises on Geometry   Master's Course

  • 2019   Lectures on Geometry   Master's Course

  • 2019   NA   Master's Course

  • 2018   Exercises on Geometry   Master's Course

  • 2018   Lectures on Geometry   Master's Course

  • 2016   Exercises on Geometry   Master's Course

  • 2016   Lectures on Geometry   Master's Course

  • 2015   Exencises on Geometry Ⅱ  

  • 2015   Lectures on Geometry Ⅱ  

  • 2014   NA  

  • 2014   NA  

  • 2014   Exencises on Geometry Ⅱ  

  • 2014   Lectures on Geometry Ⅱ  

  • 2013   Exencises on Geometry Ⅱ  

  • 2013   Lectures on Geometry Ⅱ  

  • 2012   Lectures on Geometry Ⅱ  

  • 2012   Exencises on Geometry Ⅱ  

  • 2012   Exencises on Geometry Ⅱ  

  • 2012   Lectures on Geometry Ⅱ  

  • 2011   Lectures on Geometry Ⅱ  

  • 2011   Exencises on Geometry Ⅱ  

  • 2011   Lectures on Geometry Ⅱ   Master's Course

  • 2011   Exencises on Geometry Ⅱ   Master's Course

  • 2010   Lectures on Geometry Ⅱ   Master's Course

  • 2010   Exencises on Geometry Ⅱ   Master's Course

  • 2009   Lectures on Geometry Ⅱ   Master's Course

  • 2009   Exencises on Geometry Ⅱ   Master's Course

  • 2008   Exencises on Geometry Ⅱ   Master's Course

  • 2008   Lectures on Geometry Ⅱ   Master's Course

  • 2007   Exencises on Geometry Ⅱ   Master's Course

  • 2007   Lectures on Geometry Ⅱ   Master's Course

  • 2006   Exencises on Geometry Ⅱ   Master's Course

  • 2006   Lectures on Geometry Ⅱ   Master's Course

▼display all

Papers and Awards Received Related to Improving Education

  • 2022   研究奨励金事業   日本教育公務員弘済会和歌山支部   Domestic

  • 2016   研究奨励金事業   日本教育公務員弘済会和歌山支部   Domestic

  • 2010   研究奨励金事業   日本教育公務員弘済会和歌山支部   Domestic

Research Interests

  • Locally o-minimal

  • d-minimal structure

  • 実代数幾何学

  • Transformation groups

  • 変換群論

  • Real algebraic geometry

  • O-minimal

  • Weakly o-minimal

  • definably complete

▼display all

Published Papers

  • An equivariant definable version of a theorem of J.H.C. Whitehead

    川上 智博

    和歌山大学教育学部紀要. 自然科学   67   1 - 6   2017.02

    DOI

  • A lecture for high school students on curves induced from circles

    Kawakami Tomohiro

    和歌山大学教育学部教育実践総合センター紀要 ( 和歌山大学教育学部附属教育実践総合センター )  ( 25 ) 85 - 87   2015

    DOI

  • Definable G homotopy extensions

    "Kawakami Tomohiro"

    Bulletin of the Faculty of Education, Wakayama University. Natural science ( Wakayama University )  64   9 - 11   2014.02

    DOI

  • Equivariant definable Morse functions in definably complete structures

    "Kawakami Tomohiro"

    Bulletin of the Faculty of Education, Wakayama University. Natural science ( Wakayama University )  63   23 - 28   2013.02

    DOI

  • Definable Morse functions in a real closed field

    Kawakami Tomohiro

    Bulletin of the Faculty of Education, Wakayama University. Natural science ( Wakayama University )  62   35 - 38   2012.02

    DOI

  • A definable strong G retract of a definable G set in a real closed field

    Kawakami Tomohiro

    Bulletin of the Faculty of Education, Wakayama University. Natural science ( Wakayama University )  61   7 - 11   2011.02

    DOI

  • A note on exponentially Nash G manifolds and vector bundles

    川上 智博

    Science bulletin of Josai University, Special Issue ( 城西大学理学部 )  2   63 - 75   1997

     View Summary

    Surgery and Geometric Topology : Proceedings of the conference held at Josai University 17-20 September, 1996 / edited by Andrew Ranicki and Masayuki Yamasaki. 本文データは許諾を得てeditorのHPサイトhttp://surgery.matrix.jp/math/josai96/proceedings.html から複製再利用したものである。

    DOI

▼display all

Books etc

  • 初歩からの線形代数

    長崎生光・牛瀧文宏・川上智博・原靖浩・小林雅子

    講談社  2013.12 

  • G manifolds and G vector bundles in algebraic, semialgebraic, and definable categories.

    Current Trends in Math  2001 

  • A note on expovetially Nash G manifolds and vector bundles

    Science Bulletin of Josai University  1997 

  • Nash structures of C<sup>r</sup>Gmanifolds and C<sup>r</sup>G vector bundles.

    in "Real and Complex Singularities" published by Longman.  1995 

Misc

▼display all

Works

  • 対Gボルディズム類の代数的現実について

    2001

  • Definable GCW complexes and their applications

    2001

  • デファイナブルG集合のデファイナブルGCW複体構造の存在とその応用

    2001

  • Algebraic realizations of relative G bordism classes

    2001

  • 代数的,半代数的,デファイナブルカテゴリー上のG多様体CGベクトル束について.

    2001

  • G-manifolds and G-rector bundles in algebraic, semialgebraic, and definable categories.

    2001

  • Equirariant semialgebraic vector bundles

    2000

  • Gmanifolds in an O-mimimal expansion of (R,t.・,c)

    2000

  • Piecewise triviality of Ginrariant definable C<sup>r</sup> maps and compactification of definable C<sup>r</sup>G manifolds.

    2000

  • 同変半代数的ベクトル束について

    2000

  • ベクトル束の代数的実現について

    2000

  • G不変C<sup>r</sup> definable写像の局所自明性とdefinable C<sup>r</sup>G多様体のコンパクト化について

    2000

  • G多様体の順序極小構造上への拡張について

    2000

  • Algebraic realization of vector bundles.

    2000

  • Algebraic realizations of vector bundles on a compactifiable C<sup>∞</sup>manifold.

    1999

  • Equivariant manifolds defined on O-minimal structures.

    1999

  • コンパクト化可能多様上のベクトル束の代数的実現について

    1999

  • 順序極小構造上の同変多様体について.

    1999

  • (R,X'・)上の順序極小構造上へのNashG多様体の拡張について

    1998

  • Manifolds on an O-minimal Structure

    1997

  • O-minimal 講造上の多様体論について

    1997

  • Expoventially Nash G vactor bundles

    1997

  • 指数NashGベクトル束について

    1997

  • Simultaneous Nash Structures of a pair of a C<sup>∞</sup>G manifold and its C<sup>∞</sup>G sabmanifolds.

    1996

  • Exponentially Nash G manifold structures of C<sup>∞</sup>Gmanifolds

    1996

  • C<sup>∞</sup>G多様体とその部分G多様体の同時Nash構造について

    1996

  • C<sup>∞</sup>多様体の指数Nash G多様体構造について

    1996

  • Algebraic structuers of strongly Nash vector bundles

    1995

  • Nash structures of C<sup>∞</sup> vector bundles

    1995

  • C<sup>∞</sup>Gベクトル束のNash構造について

    1995

  • Strongly Nashベクトル束の代数的構造について

    1995

  • Algebraic structuers of Nash vector bundles a Nash manifold

    1995

  • Nash多様体上のNashベクトル束の代数的構造について

    1995

  • Nash structures of C<sup>∞</sup>Gmanifolds, vector bundles, and Lie groups.

    1994

  • Nash structures of C<sup>∞</sup>Gmanifolds and C<sup>∞</sup>G vector bundles.

    1994

  • Nash Gmanifold structures of C<sup>∞</sup>Gmanifolds.

    1994

  • C<sup>∞</sup>G多様体,ベクトル束,およびリー群のNash構造について

    1994

  • リー群の局所Nash群構造およびNash群構造について

    1994

  • Nash Gmanifold structures of Gmanifolds.

    1994

  • C<sup>∞</sup>多様体のNashG多様体構造について

    1994

  • C<sup>∞</sup>G多様体とC<sup>∞</sup>Gベクトル束のNash構造について

    1994

  • G多様体のNashG多様体構造について

    1994

  • Locally Nash group structures and Nash group structures of Lie groups.

    1994

  • 代数的Gベクトル束の有理自明性について

    1993

  • Rational triviality of algebraic Gvector bumdles.

    1993

  • 半代数的Gベクトル束について

    1992

  • Notes on omialgebraic G vector bundles.

    1992

  • An example which shows a difference between polynomial G isomorphism and rational G isomorphism.

    1991

  • 多項式G同型と有理式G同型の差を示す例について

    1991

  • Polynomial and rational G isomorphism of G vector bundles

    1991

  • Gベクトル束の代数的G同型と多項式G同型について

    1991

▼display all

Awards & Honors

  • Top Cited Article

    Winner: 藤田雅人, 川上智博, 小峰航

    2024.04   Wiley   Tameness of definably complete locally o-minimal structures and definable bounded multiplication

  • Top Downloaded Article

    Winner: Masato Fujita, Tomohiro Kawakami and Wataru Komine

    2024.03   Wiley   Tameness of definably complete locally o-minimal structures and definable bounded multiplication

Conference Activities & Talks

  • 部分的に積がデファイナブルとなるデファイナブリー完備局所順序極小構造について

    藤田雅人, 川上智博, 小峰航  [Invited]

    和歌山大学研究会  2022.12.17  

  • デファイナブル固有商空間

    藤田雅人, 川上智博  [Invited]

    モデル理論における独立概念と次元の研究  2022.12.13  

  • On definable topology locally o-minimal case

    Masato Fujita, Tomohiro Kawakami  [Invited]

    変換群論の新潮流  2022.05.24  

  • 有界デファイナブル積をもったデファナブリー完備局所順序極小構造1(1)

    藤田雅人, 川上智博  [Invited]

    モデル理論夏の学校2021  2021.09.05  

  • 有界デファイナブル積をもったデファナブリー完備局所順序極小構造1(2)

    藤田雅人, 川上智博  [Invited]

    モデル理論夏の学校2021  2021.09.05  

  • 局所デファイナブルC^{\infty}G多様体について

    川上智博  [Invited]

    モデル理論における独立概念と次元の研究  2020.12.07  

  • Simultaneously definable C^r compactification

    川上智博  [Invited]

    モデル理論夏の学校研集会2019  2019.09.02  

  • 指数的順序極小空間上のデファイナブルC^{\infty}級多様体の埋め込みについて

    川上智博  [Invited]

    大阪大学変換群論研究会  2018.11.14  

  • T-regularity theorem in o-minimal structures

    川上智博  [Invited]

    Morel Theory Summer school 2018  2018.09.11  

  • Every strongly definable C^r G vector bundle admits a unique strongly definable C^{\infty} G vector bundle structure

    川上智博  [Invited]

    Model theoretic aspects of the notion of independence and dimension  2017.12.04  

  • Affine definable C^{\infty}G manifold structures in an o-minimal structure

    川上智博  [Invited]

    第44回変換群論シンポジウム  2017.11.17  

  • Definable C^r submanifolds in a definable C^r manifold

    川上智博  [Invited]

    第42回変換群論シンポジウム  2015.11.26  

  • Finiteness of orbit types of definably proper actions

    川上智博  [Invited]

    新しい変換群論の幾何  2015.05.25  

▼display all

KAKENHI

  • Borsuk-Ulam型不変量と同変写像の存在問題

    2023.04
    -
    2027.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

  • 群作用の軌道構造を保つ同変写像の存在問題および分類問題の研究

    2011.04
    -
    2014.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

Competitive funding, donations, etc. from foundation, company, etc.

  • 教育学部寄附金(公益財団法人日本教育公務員弘済会和歌山支部研究助成)

    2022.08
    -
    2023.03
     

    Research subsidy  Principal investigator

Instructor for open lecture, peer review for academic journal, media appearances, etc.

  • レフェリー

    2024.12
    -
    2025.01

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2024.09
    -
    2024.11

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • 指導助言者

    2024.08.02

    和歌山県高等学校数学教育研究会

     View Details

    高校数学部会、高校の活性化

    第71回近畿算数・数学教育研究大阪大会の高等学校部会の研究発表の指導助言をしていただく。

  • 出張授業者

    2024.02.29

    和歌山市

     View Details

    学生支援プログラム

    第3回和歌山市学生支援プロジェクト

  • レフェリー

    2024.01
    -
    2024.03

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • 指導助言者

    2023.11.10

    和歌山県高等学校数学教育研究会

     View Details

    高校数学部会、高校の活性化

    第70回近畿算数・数学教育研究滋賀大会の高等学校部会の研究発表の指導助言をしていただく。

  • レフェリー

    2023.11
    -
    2024.01

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2023.05
    -
    2023.08

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2022.12
    -
    2023.01

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • 指導助言者

    2022.11.18

    和歌山県高等学校 数学教育研究会

     View Details

    高校数学部会

    第69回近畿算数・数学教育研究京都大会の分科会(教育内容1)の助言・指導をしていただきたい。

  • Reviewer

    2022.08
    -
    2022.09

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • Reviewer

    2022.05
    -
    2022.06

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2022.05
    -
    2022.06

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2022.03
    -
    2022.04

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • Reviewer

    2022.03
    -
    2022.04

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2022.02
    -
    2022.03

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • Reviewer

    2022.01
    -
    2022.02

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2022.01
    -
    2022.02

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • 和歌山大学教育学部 准教授

    2021.11.19

    和歌山県高等学校数学教育研究会

     View Details

    奈良を中心とする高校数学教育の活性化

    第68回近畿算数・数学教育研究奈良県大会 指導助言

  • 第68回近畿算数・数学教育研究奈良大会指導者

    2021.11.19

    和歌山県高等学校数学教育研究会

     View Details

    奈良県の高校教育

    第68回近畿算数・数学教育研究奈良大会 指導助言

  • レフェリー

    2021.09
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2021.07
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2021.05
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2021.04
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • Reviewer

    2021.04
    -
    2021.05

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • Reviewer

    2021.01
    -
    2021.02

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • 和歌山大学教育学部 准教授

    2020.11.13

    和歌山県高等学校数学教育研究会

     View Details

    兵庫県を中心とする高校数学教育の活性化

    第67回近畿算数・数学教育研究兵庫県大会 指導助言

  • レフェリー

    2020.06
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レフェリー

    2020.04
    -
    Now

    非公開

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レフェリー,任期:非公開

  • レビューワー

    2016.04
    -
    Now

    アメリカ数学会

     View Details

    学術雑誌等の編集委員・査読・審査員等

    レビューワー,任期:非公開

▼display all

Course for renewal of teaching license, teacher-librarian course, etc. (contracted business)

  • 2021  【選択】平面や空間の再認識(教員免許状更新講習)

  • 2020  【選択】平面や空間の再認識(コロナ対策のため開講中止)(教員免許更新講習)

  • 2019  平面と空間の再認識(教員免許状更新講習)

  • 2018  平面と空間の再認識(教員免許状更新講習)

  • 2017  平面と空間の再認識(教員免許状更新講習)

  • 2016  平面と空間の再認識(教員免許状更新講習)

  • 2015  平面と空間の再認識(教員免許状更新講習)

  • 2014  平面と空間の再認識(教員免許状更新講習)

  • 2013  平面と空間の再認識(教員免許状更新講習)

  • 2012  平面と空間の再認識(教員免許状更新講習)

  • 2011  平面と空間の再認識(教員免許状更新講習)

  • 2010  平面と空間の再認識(教員免許状更新講習)

  • 2009  平面と空間の再認識(教員免許状更新講習)

▼display all

Committee member history in academic associations, government agencies, municipalities, etc.

  • 指導助言者

    2021.11
    -
    Now
     

    第70回近畿算数・数学教育研究奈良大会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導助言者

  • 編集者

    2021.09
     

    New developments of transformation groups

     View Details

    国や地方自治体、他大学・研究機関等での委員

    講演集の編集者,任期:2021.5-2021.9

  • 主催者

    2021.05.24
    -
    2021.05.26
     

    New developments of transformation groups

     View Details

    国や地方自治体、他大学・研究機関等での委員

    主催者,任期:2021.5-2021.5

  • 指導助言者

    2020.11
    -
    Now
     

    第69回近畿算数・数学教育研究大阪大会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導助言者

  • 指導助言者

    2019.11
    -
    Now
     

    第66回近畿算数・数学教育研究大阪大会における分科会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導助言者,任期:2019年11月~

Other Social Activities

  • 阪南市A1地区班長

    2023.04
    -
    2024.03

    その他

     View Details

    社会との連携を推進する活動

    阪南市自治会役員

  • 2021年度教員採用試験対策講座講師

    2022.03

    その他

     View Details

    教員採用試験対策講座

    教員採用試験対策講座

  • 2021年度日本教育大学協会近畿地区数学部会

    2021.11.24

    その他

     View Details

    社会との連携を推進する活動

    2021年度日本教育大学協会近畿地区数学部会の和歌山大学の代表参加者

  • 2019年度教員免許更新講習

    2021.07

    その他

     View Details

    社会との連携を推進する活動

    2019年度の教員免許状更新講習

  • 2021年度教員免許更新講習

    2021.07

    その他

     View Details

    社会との連携を推進する活動

    2021年度日本教育大学協会近畿地区数学部会の和歌山大学の代表参加者

  • 内地研究員の受け入れ

    2009.04
    -
    2010.03

    その他

     View Details

    産業界、行政諸機関等と行った共同研究、新技術創出、コンサルティング等

    受け入れた内地研究員と共同研究を行って、研究発表を行った。また、共著論文も執筆した。,実施者:川上智博

▼display all