Updated on 2024/05/09

写真a

 
IMAI Toshiyuki
 
Name of department
Faculty of Systems Engineering, Media Design
Job title
Professor
Concurrent post
Informatics Division(Professor)
Mail Address
E-mail address
Homepage
External link

Education

  • The University of Tokyo   工学系研究科   計数工学  

  • The University of Tokyo   Graduate School, Division of Engineering  

  • The University of Tokyo   Faculty of Science  

  • The University of Tokyo   Faculty of Science   数  

Degree

  • Master

  • Doctor

Academic & Professional Experience

  • 1989
    -
    2007

    Wakayama University   Faculty of Systems Engineering

  • 1989
    -
    2007

    Wakayama University   Faculty of Systems Engineering

  • 1989
    -
    1998

    The University of Tokyo   The Faculty of Engineering

Association Memberships

  • 日本数学会

  • 情報処理学会

  • 日本応用数理学会

Research Areas

  • Informatics / Computational science

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research)

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Media Design Seminar 2A   Specialized Subjects

  • 2023   Media Design Seminar 2B   Specialized Subjects

  • 2023   Media Design Seminar 1A   Specialized Subjects

  • 2023   Media Design Seminar 1B   Specialized Subjects

  • 2023   Geometrical Mathematics A   Specialized Subjects

  • 2023   Geometrical Mathematics B   Specialized Subjects

  • 2023   Calculus 1   Specialized Subjects

  • 2023   Calculus 2   Specialized Subjects

  • 2023   Calculus 1   Specialized Subjects

  • 2023   Calculus 2   Specialized Subjects

  • 2023   Calculus 1   Specialized Subjects

  • 2023   Calculus 2   Specialized Subjects

  • 2022   Calculus 2   Specialized Subjects

  • 2022   Calculus 2   Specialized Subjects

  • 2022   Calculus 2   Specialized Subjects

  • 2022   Calculus 1   Specialized Subjects

  • 2022   Calculus 1   Specialized Subjects

  • 2022   Calculus 1   Specialized Subjects

  • 2022   Calculus 1   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Geometrical Mathematics B   Specialized Subjects

  • 2022   Geometrical Mathematics A   Specialized Subjects

  • 2022   Media Design Seminar 2B   Specialized Subjects

  • 2022   Media Design Seminar 2A   Specialized Subjects

  • 2022   Media Design Seminar 1B   Specialized Subjects

  • 2022   Media Design Seminar 1A   Specialized Subjects

  • 2022   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Geometrical Mathematics B   Specialized Subjects

  • 2021   Calculus 2   Specialized Subjects

  • 2021   Calculus 2   Specialized Subjects

  • 2021   Calculus 2   Specialized Subjects

  • 2021   Calculus 2   Specialized Subjects

  • 2021   Calculus 1   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Geometrical Mathematics A   Specialized Subjects

  • 2021   Media Design Seminar 2B   Specialized Subjects

  • 2021   Media Design Seminar 2A   Specialized Subjects

  • 2021   Media Design Seminar 1B   Specialized Subjects

  • 2021   Calculus 1   Specialized Subjects

  • 2021   Calculus 1   Specialized Subjects

  • 2021   Calculus 1   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Media Design Seminar 1A   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Media Design Seminar 2B   Specialized Subjects

  • 2020   Media Design Seminar 2A   Specialized Subjects

  • 2020   Media Design Seminar 1B   Specialized Subjects

  • 2020   Media Design Seminar 1A   Specialized Subjects

  • 2020   Geometrical Mathematics B   Specialized Subjects

  • 2020   Geometrical Mathematics A   Specialized Subjects

  • 2020   Calculus 2   Specialized Subjects

  • 2020   Calculus 2   Specialized Subjects

  • 2020   Calculus 2   Specialized Subjects

  • 2020   Calculus 1   Specialized Subjects

  • 2020   Calculus 1   Specialized Subjects

  • 2019   Graduation Research   Specialized Subjects

  • 2019   Media Design Seminar Ⅱ   Specialized Subjects

  • 2019   Media Design Seminar Ⅰ   Specialized Subjects

  • 2019   Geometrical Mathematics   Specialized Subjects

  • 2019   Introduction to Majors 1   Specialized Subjects

  • 2019   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2019   Calculus 2   Specialized Subjects

  • 2019   Calculus 1   Specialized Subjects

  • 2018   Media Design Seminar Ⅱ   Specialized Subjects

  • 2018   Media Design Seminar Ⅰ   Specialized Subjects

  • 2018   Geometrical Mathematics   Specialized Subjects

  • 2018   Calculus 2   Specialized Subjects

  • 2018   Calculus 1   Specialized Subjects

  • 2017   Graduation Research   Specialized Subjects

  • 2017   Media Design Seminar Ⅰ   Specialized Subjects

  • 2017   Geometrical Mathematics   Specialized Subjects

  • 2017   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2017   Calculus 2   Specialized Subjects

  • 2017   Calculus 1   Specialized Subjects

  • 2017   Introduction to Majors 2   Specialized Subjects

  • 2017   Calculus 1   Specialized Subjects

  • 2016   Introduction to Majors 2   Specialized Subjects

  • 2016   Introduction to Majors 2   Specialized Subjects

  • 2016   Introduction to Majors 1   Specialized Subjects

  • 2016   Introduction to Majors 1   Specialized Subjects

  • 2016   Graduation Research   Specialized Subjects

  • 2016   Graduation Research   Specialized Subjects

  • 2016   Graduation Research   Specialized Subjects

  • 2016   Geometrical Mathematics   Specialized Subjects

  • 2016   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2016   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2016   Calculus 2   Specialized Subjects

  • 2016   Calculus 1   Specialized Subjects

  • 2016   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2016   Calculus 1   Specialized Subjects

  • 2015   Calculus 1   Specialized Subjects

  • 2015   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2015   Calculus 2   Specialized Subjects

  • 2015   Fundamental Mathematics for Computing   Specialized Subjects

  • 2015   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2014   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2014   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2014   Fundamental Mathematics for Computing   Specialized Subjects

  • 2014   Introduction to Design and InformationSciences   Specialized Subjects

  • 2014   Calculus 2   Specialized Subjects

  • 2014   Calculus 1   Specialized Subjects

  • 2013   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2013   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2013   Fundamental Mathematics for Computing   Specialized Subjects

  • 2013   Introduction to Design and InformationSciences   Specialized Subjects

  • 2013   Calculus 2   Specialized Subjects

  • 2013   Calculus 1   Specialized Subjects

  • 2013   Information systems in everyday life   Liberal Arts and Sciences Subjects

  • 2013   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2013   Introduction to Design and InformationSciences   Specialized Subjects

  • 2013   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2013   Calculus 1   Specialized Subjects

  • 2012   NA   Specialized Subjects

  • 2012   Calculus 1   Specialized Subjects

  • 2012   Introduction to Design and InformationSciences   Specialized Subjects

  • 2012   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2012   Information systems in everyday life   Liberal Arts and Sciences Subjects

  • 2012   Fundamental Mathematics for Computing   Specialized Subjects

  • 2012   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2011   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2011   Design and Information Sciences Seminar Ⅱ   Specialized Subjects

  • 2011   Design and Information Sciences Seminar Ⅰ   Specialized Subjects

  • 2011   Fundamental Mathematics for Computing   Specialized Subjects

  • 2011   Introduction to Design and InformationSciences   Specialized Subjects

  • 2011   Calculus 2   Specialized Subjects

  • 2011   Calculus 1   Specialized Subjects

  • 2011   Information systems in everyday life   Liberal Arts and Sciences Subjects

  • 2011   Graduation Research   Specialized Subjects

  • 2010   Information systems in everyday life   Liberal Arts and Sciences Subjects

  • 2010   NA   Specialized Subjects

  • 2010   Graduation Research   Specialized Subjects

  • 2010   Introduction to Design and InformationSciences   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   Fundamental Mathematics for Computing   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Fundamental Mathematics for Computing   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Introduction to Design and InformationSciences   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Graduation Research   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Fundamental Mathematics for Computing   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Introduction to Design and InformationSciences   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Graduation Research   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Fundamental Mathematics for Computing   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Introduction to Design and InformationSciences   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Graduation Research   Specialized Subjects

▼display all

Classes

  • 2023   Computational Geometry   Master's Course

  • 2023   Systems Engineering SeminarⅠA   Master's Course

  • 2023   Systems Engineering SeminarⅠB   Master's Course

  • 2023   Systems Engineering SeminarⅡA   Master's Course

  • 2023   Systems Engineering SeminarⅡB   Master's Course

  • 2023   Systems Engineering Project SeminarⅠA   Master's Course

  • 2023   Systems Engineering Project SeminarⅠB   Master's Course

  • 2023   Systems Engineering Project SeminarⅡA   Master's Course

  • 2023   Systems Engineering Project SeminarⅡB   Master's Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Advanced Research   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Project SeminarⅡB   Master's Course

  • 2022   Systems Engineering Project SeminarⅡA   Master's Course

  • 2022   Systems Engineering Project SeminarⅠB   Master's Course

  • 2022   Systems Engineering Project SeminarⅠA   Master's Course

  • 2022   Systems Engineering SeminarⅡB   Master's Course

  • 2022   Systems Engineering SeminarⅡA   Master's Course

  • 2022   Systems Engineering SeminarⅠB   Master's Course

  • 2022   Systems Engineering SeminarⅠA   Master's Course

  • 2022   Computational Geometry   Master's Course

  • 2021   Computational Geometry   Master's Course

  • 2021   Systems Engineering SeminarⅠA   Master's Course

  • 2021   Systems Engineering SeminarⅠA   Master's Course

  • 2021   Systems Engineering SeminarⅠB   Master's Course

  • 2021   Systems Engineering SeminarⅠB   Master's Course

  • 2021   Systems Engineering SeminarⅡA   Master's Course

  • 2021   Systems Engineering SeminarⅡA   Master's Course

  • 2021   Systems Engineering SeminarⅡB   Master's Course

  • 2021   Systems Engineering SeminarⅡB   Master's Course

  • 2021   Systems Engineering Project SeminarⅠA   Master's Course

  • 2021   Systems Engineering Project SeminarⅠA   Master's Course

  • 2021   Systems Engineering Project SeminarⅠB   Master's Course

  • 2021   Systems Engineering Project SeminarⅠB   Master's Course

  • 2021   Systems Engineering Project SeminarⅡA   Master's Course

  • 2021   Systems Engineering Project SeminarⅡA   Master's Course

  • 2021   Systems Engineering Project SeminarⅡB   Master's Course

  • 2021   Systems Engineering Project SeminarⅡB   Master's Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Advanced Research   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Project SeminarⅡB   Master's Course

  • 2020   Systems Engineering Project SeminarⅡA   Master's Course

  • 2020   Systems Engineering Project SeminarⅠB   Master's Course

  • 2020   Systems Engineering Project SeminarⅠA   Master's Course

  • 2020   Systems Engineering SeminarⅡB   Master's Course

  • 2020   Systems Engineering SeminarⅡA   Master's Course

  • 2020   Systems Engineering SeminarⅠB   Master's Course

  • 2020   Systems Engineering SeminarⅠA   Master's Course

  • 2020   Computational Geometry   Master's Course

  • 2019   Computational Geometry   Master's Course

  • 2019   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering SeminarⅡB   Master's Course

  • 2019   Systems Engineering SeminarⅡA   Master's Course

  • 2019   Systems Engineering SeminarⅠB   Master's Course

  • 2019   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Project SeminarⅡB   Master's Course

  • 2019   Systems Engineering Project SeminarⅡA   Master's Course

  • 2019   Systems Engineering Project SeminarⅠB   Master's Course

  • 2019   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Project SeminarⅡB   Master's Course

  • 2018   Systems Engineering Project SeminarⅡA   Master's Course

  • 2018   Systems Engineering Project SeminarⅠB   Master's Course

  • 2018   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering SeminarⅡB   Master's Course

  • 2018   Systems Engineering SeminarⅡA   Master's Course

  • 2018   Systems Engineering SeminarⅠB   Master's Course

  • 2018   Systems Engineering SeminarⅠA   Master's Course

  • 2018   Computational Geometry   Master's Course

  • 2017   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Project SeminarⅡB   Master's Course

  • 2017   Systems Engineering Project SeminarⅡA   Master's Course

  • 2017   Systems Engineering Project SeminarⅠB   Master's Course

  • 2017   Systems Engineering Project SeminarⅠA   Master's Course

  • 2017   Systems Engineering SeminarⅡB   Master's Course

  • 2017   Systems Engineering SeminarⅡA   Master's Course

  • 2017   Systems Engineering SeminarⅠB   Master's Course

  • 2017   Systems Engineering SeminarⅠA   Master's Course

  • 2017   Computational Geometry   Master's Course

  • 2016   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Project SeminarⅡB   Master's Course

  • 2016   Systems Engineering Project SeminarⅡA   Master's Course

  • 2016   Systems Engineering Project SeminarⅠB   Master's Course

  • 2016   Systems Engineering Project SeminarⅠA   Master's Course

  • 2016   Systems Engineering SeminarⅡB   Master's Course

  • 2016   Systems Engineering SeminarⅡA   Master's Course

  • 2016   Systems Engineering SeminarⅠB   Master's Course

  • 2016   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Computational Geometry   Master's Course

  • 2015   Computational Geometry  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡA  

  • 2015   Systems Engineering SeminarⅠA  

  • 2015   Systems Engineering Project SeminarⅡA  

  • 2015   Systems Engineering Project SeminarⅠA  

  • 2015   Systems Engineering Global Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡB  

  • 2015   Systems Engineering SeminarⅠB  

  • 2015   Systems Engineering Project SeminarⅡB  

  • 2015   Systems Engineering Project SeminarⅠB  

  • 2015   Systems Engineering Global Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Project SeminarⅡB  

  • 2014   Systems Engineering Project SeminarⅡA  

  • 2014   Systems Engineering Project SeminarⅠB  

  • 2014   Systems Engineering Project SeminarⅠA  

  • 2014   Systems Engineering SeminarⅡB  

  • 2014   Systems Engineering SeminarⅡA  

  • 2014   Systems Engineering SeminarⅠB  

  • 2014   Systems Engineering SeminarⅠA  

  • 2014   Computational Geometry  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Project SeminarⅡB  

  • 2013   Systems Engineering Project SeminarⅡA  

  • 2013   Systems Engineering Project SeminarⅠB  

  • 2013   Systems Engineering Project SeminarⅠA  

  • 2013   Systems Engineering SeminarⅡB  

  • 2013   Systems Engineering SeminarⅡA  

  • 2013   Systems Engineering SeminarⅠB  

  • 2013   Systems Engineering SeminarⅠA  

  • 2013   Computational Geometry  

  • 2013   Systems Engineering SeminarⅠA  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Computational Geometry  

  • 2012   Computational Geometry  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡA  

  • 2012   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Project SeminarⅡA  

  • 2012   Systems Engineering Project SeminarⅠA  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡB  

  • 2012   Systems Engineering SeminarⅠB  

  • 2012   Systems Engineering Project SeminarⅡB  

  • 2012   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅡB  

  • 2011   Systems Engineering Project SeminarⅡA  

  • 2011   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅠA  

  • 2011   Systems Engineering Advanced Research  

  • 2011   Systems Engineering Advanced Research  

  • 2011   NA  

  • 2011   NA  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Computational Geometry  

  • 2009   Computational Geometry   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   Information systems in everyday life   Master's Course

  • 2008   Computational Geometry   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   Information systems in everyday life   Master's Course

  • 2007   Computational Geometry   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   Information systems in everyday life   Master's Course

▼display all

Research Interests

  • Mathematical Engineering

  • 数理工学

Published Papers

  • A Proposal of an Inversible Minkowski Sum of Figures

    SUGIHARA Kokichi, IMAI Toshiyuki, HATAGUCHI Takeshi

    The Transactions of the Institute of Electronics,Information and Communication Engineers. ( The Institute of Electronics, Information and Communication Engineers )  80 ( 10 ) 2663 - 2670   1997.10  [Refereed]

     View Summary

    図形のミンコフスキー和を, ある条件を満たす閉曲線同士の演算として定義し直すことを提案する. 従来のミンコフスキー和は, この閉曲線で囲まれた領域同士の演算であると解釈できる. また, この演算の逆演算は今までは凸な図形に対してのみ定義されていたのに対して, ここで提案する新しい定義に基づけば, 凸とは限らないより一般の図形に対して逆演算が素直に定義できる.

  • A Local Multi-Layer Model for Tissue Classification of <i>in-vivo</i> Atherosclerotic Plaques in Intravascular Optical Coherence Tomography

    REN Xinbo, WU Haiyuan, CHEN Qian, IMAI Toshiyuki, KUBO Takashi, AKASAKA Takashi

    IEICE Transactions on Information and Systems ( The Institute of Electronics, Information and Communication Engineers )  102 ( 11 ) 2238 - 2248   2019  [Refereed]

     View Summary

    <p>Clinical researches show that the morbidity of coronary artery disease (CAD) is gradually increasing in many countries every year, and it causes hundreds of thousands of people all over the world dying for each year. As the optical coherence tomography with high resolution and better contrast applied to the lesion tissue investigation of human vessel, many more micro-structures of the vessel could be easily and clearly visible to doctors, which help to improve the CAD treatment effect. Manual qualitative analysis and classification of vessel lesion tissue are time-consuming to doctors because a single-time intravascular optical coherence (IVOCT) data set of a patient usually contains hundreds of <i>in-vivo</i> vessel images. To overcome this problem, we focus on the investigation of the superficial layer of the lesion region and propose a model based on local multi-layer region for vessel lesion components (lipid, fibrous and calcified plaque) features characterization and extraction. At the pre-processing stage, we applied two novel automatic methods to remove the catheter and guide-wire respectively. Based on the detected lumen boundary, the multi-layer model in the proximity lumen boundary region (PLBR) was built. In the multi-layer model, features extracted from the A-line sub-region (ALSR) of each layer was employed to characterize the type of the tissue existing in the ALSR. We used 7 human datasets containing total 490 OCT images to assess our tissue classification method. Validation was obtained by comparing the manual assessment with the automatic results derived by our method. The proposed automatic tissue classification method achieved an average accuracy of 89.53%, 93.81% and 91.78% for fibrous, calcified and lipid plaque respectively.</p>

    DOI

  • An Automatic and Unified Treatment for the Degeneracy of Geometric Program and its Implementation(Theory)

    Yamamoto Shusaku, Imai Toshiyuki

    Transactions of the Japan Society for Industrial and Applied Mathematics ( The Japan Society for Industrial and Applied Mathematics )  24 ( 4 ) 307 - 315   2014  [Refereed]

     View Summary

    In geometrical program, degenerated input needs to be dealt with exceptionally. Since there are large variety of degeneracies, it is difficult to deal with all of those degeneracies individually. Conventional unified treatments for degeneracies require programmers to rewrite a quite amount in each program while what we propose in this paper deals with degeneracies almost automatically avoiding the rewrite of the program in C. For geometric programs in C, we introduce a new class in C++, replace the type of some variables with it and make the programs deal with degeneracies by symbolic perturbation with operator overloading in C++.

    DOI

  • Proposal of an Analysis Method of Characteristics of Space Curves

    Inoue Jiro, Harada Toshinobu, Imai Toshiyuki, Kojima Shiori

    Bulletin of Japanese Society for the Science of Design ( Japanese Society for the Science of Design )  55 ( 5 ) 5_65 - 5_74   2009

     View Summary

    <p>At present, in the field of industrial design, it is too difficult for designers to control keylines as they become aesthetic curves by using existing CAD systems. Therefore, modelers must finish the clay models which are shaved from the 3D data. However, the work needs a great deal of labor.<br> Then, the aims of this study were to propose of an analysis system of space curves and to clarify characteristics of aesthetic space curves. Concretely, first, we developed the analysis system of space curves. Second, we made logarithmic curvature graphs and logarithmic torsion graphs from radii of curvature and radii of torsion of space curves in several expressions and products. And we clarified characteristics of these space curves. Third, we analyzed the lines of curvature of some curved surfaces by applying this system. As a result, we clarified characteristics of the lines of curvature defining the curved surfaces, the connection positions, and the combinations. </p>

    DOI

  • Extraction of Lines of Curvature and Analysis of Curves in the Natural Objects and Craftworks

    Inoue Jiro, Harada Toshinobu, Imai Toshiyuki

    Bulletin of Japanese Society for the Science of Design ( Japanese Society for the Science of Design )  54 ( 3 ) 39 - 46   2007  [Refereed]

     View Summary

    Recently, the natural objects appeared in picture contents such as cartoon films or movies are made by CG. We need a great deal of labor for this production. It is because those objects are made by kansei of a creator or measuring the real objects troublesomely. Then, the aim of the study was to clarify visual languages (VLs) and the combination of VLs constituting curved surfaces of natural objects and craftworks, and to show a new possibility of making digital archives of them. First, we developed an extraction system of lines of curvature. Second, we extracted lines of curvature on the curved surfaces of a stone, wine glass, a sake bottle and computer mouse by the system. The extracted curves were projected on two planes of projection and we could get two plane curves. Lastly, these were divided into curves of monotone curvature. "Characteristic" of the curve was analyzed for them. As a result, we clarified VLs and the combination of VLs in natural objects and craftworks and got a possibility of the digital archive.

    DOI

  • Topology-Oriented Implementation - An Approach to Robust Geometric Algorithms.

    Kokichi Sugihara, Masao Iri, Hiroshi Inagaki, Toshiyuki Imai

    Algorithmica   27 ( 1 ) 5 - 20   2000  [Refereed]

    DOI

  • An invertible Minkowski sum of figures.

    Kokichi Sugihara, Toshiyuki Imai, Takeshi Hataguchi

    Systems and Computers in Japan   29 ( 7 ) 33 - 40   1998  [Refereed]

    DOI

  • 多項式の符号判定のための剰余演算の利用法と計算幾何学への応用

    日本応用数理学会論文誌   5 ( 2 ) 11 - 18   1995  [Refereed]

▼display all

Books etc

  • 情報システムのための情報技術辞典

    培風館  2006  ISBN: 4563015601

  • Primer of the Design Information Science

    2000 

  • デザイン情報学入門

    日本規格協会  2000 

  • 工学のための応用代数

    共立出版  1999 

Misc

  • トランプのシャッフル方法の組み合わせにおける無作為性の評価

    西川和希, 今井敏行, 床井浩平

    映像表現・芸術科学フォーラム 2020講演予稿集     2020.03

  • 図​形​処​理​に​お​け​る​近​似​算​法​に​よ​る​構​造​厳​密​性​の​保​証

    今井敏行 (Part: Lead author )

    日本応用数理学会2019年度年会講演予稿集     2019.09

  • 確率的表現に基づく消失点の安定検出に関する研究

    舛本高紀, 陳謙, 今井敏行

    情報処理学会 第81回全国大会講演予稿集     2019.03

  • Bezier曲線を生成元とするVoronoi図の位相構造の決定

    辻野弘章, 今井敏行

    情報処理学会 第81回全国大会講演予稿集     2019.03

  • 直線の確率表現に基づく消失点の安定検出に関する研究

    舛本高紀, 陳謙, 今井敏行

    2018年度 情報処理学会関⻄支部 支部大会講演予稿集     2018.09

  • 構造情報処理の厳密性を保証する近似図形処理フレームワーク

    今井敏行 (Part: Lead author )

        2018.09

  • 消失点検出のための直線の確率表現に基づく投票法

    舛本高紀, 陳謙, 今井敏行

    日本応用数理学会2018年度年会講演予稿集     2018.09

  • Bezier曲線を生成元とするVoronoi図の厳密な位相構造の決定

    辻野弘章, 今井 敏行

    2018年度 情報処理学会関⻄支部 支部大会講演予稿集     2018.09

  • Bezier曲線を生成元としたVoronoi図の正確な隣接関係の決定

    辻野弘章, 今井 敏行

    日本応用数理学会2018年度年会講演予稿集     2018.09

  • 2次元Delaunay図の逐次添加型3次元構成と入力順序によるパフォーマンス

    岩本龍馬, 今井敏行

    日本応用数理学会研究部会連合発表会     2018.03

  • Bezier曲線を生成元とするVoronoi図の正確な位相構造の決定

    辻野弘章, 今井敏行

    応用数理 学生・若手研究者のための研究交流会     2018.03

  • 生成元として円と線分が混在したVoronoi図の位相的に厳密な近似構成

    今井敏行 (Part: Lead author )

    日本応用数理学会2017年度年会講演予稿集     2017.09

  • 2次元Delaunay図の逐次添加型3次元構成と入力順序による速度比較

    岩本龍馬, 今井敏行

    日本応用数理学会2017年度年会講演予稿集     2017.09

  • 点列近似によるBezier曲線のVoronoi図の位相的に正確な構成

    辻野弘章, 今井敏行

    日本応用数理学会2017年度年会講演予稿集     2017.09

  • 領域隣接情報が厳密な円のVoronoi図の近似構成の性能評価

    今井 敏行

    第79回全国大会講演論文集   2017 ( 1 ) 187 - 188   2017.03

     View Summary

    円のVoronoi図は点のVoronoi図とは異なる性質をもち,構成法を新規に開発する必要がある.円周を一様に点列近似し点のVoronoi図の構成法を利用する近似構成法も,よく用いられるが,精度と計算量が両立しない.厳密な位相情報の獲得のみ注力して,一様な近似をやめ,近似点数を減らすことで高速化けした構成法を提案した.本研究では,この構成法について,円を近似した点の総数の観点からこの構成法の計算量の評価実験を行い,この構成法の高速性を示す.

  • Delaunay図とLp-Delaunay図のメッシュとしての複数規準による形状比較

    岩本 龍馬, 今井 敏行

    第79回全国大会講演論文集   2017 ( 1 ) 237 - 238   2017.03

     View Summary

    凸多角形内に点集合があるとき,凸多角形の内部を単体で分割したものを三角形分割と呼ぶ。Delaunay図とは、2次元において、最大角最小や最大外接円最小といった性質をもつ三角形分割である。有限要素法において、メッシュに用いられる三角形はつぶれていないものが望ましいため、上記の最適性を持つDelaunay図が自動分割によく用いられる。Delaunay図は2次元では最適性が証明されているが、3次元ではつぶれた四面体が発生することが知られている。また、Delaunay図はその最適性の証明があるために、十分に調べられていない。本研究では、2次元において点同士の接続関係の条件を変化させたLp-Delaunay図を用いて、形状変化の比較実験を行った。Lp-Delaunay図はp=2のときDelaunay図になる一般化である。

  • Simple Construction of Delaunay Diagram through 3D Convex Hull and an Improvement of its Time Performance

    岩本 龍馬, 今井 敏行

    情報処理学会関西支部支部大会講演論文集 ( [情報処理学会関西支部] )  ( 2017 ) 3p   2017

  • A Simplified Rapid Search Restricted to Voronoi Diagrams

    辻野 弘章, 今井 敏行

    情報処理学会関西支部支部大会講演論文集 ( [情報処理学会関西支部] )    3p   2017

  • Lp-Delaunay図のp=2の周辺におけるメッシュ形状最適性の実験的多面評価

    岩本龍馬, 今井敏行

    日本応用数理学会2016年度年会講演予稿集     2016.09

  • 位相的に厳密な円や線分のVoronoi図の統一的近似構成

    今井敏行 (Part: Lead author )

    日本応用数理学会2016年度年会講演予稿集     2016.09

  • Experimental evaluations of the shape optimality of the Delaunay diagram in Lp Delaunay diagrams

    岩本 龍馬, 今井 敏行

    情報処理学会関西支部支部大会講演論文集 ( [情報処理学会関西支部] )  ( 2016 ) 3p   2016

  • 近似的手法による線分L∞ボロノイ図の構造的に厳密な構成

    友永優音, 今井敏行

    日本応用数理学会2015年度年会講演予稿集     2015.09

  • 円の勢力圏分割の点列近似による構造的に厳密な構成

    樋口雄大, 今井敏行

    日本応用数理学会2015年度年会講演予稿集     2015.09

  • 白地図内の県名等最大化に向けたL∞ボロノイ図の構成

    友永優音, 今井敏行

    日本応用数理学会2014年度年会講演予稿集     2014.09

  • Delaunay図構成における退化への完全対処と簡易部分対処

    今井敏行 (Part: Lead author )

    日本応用数理学会2014年度年会講演予稿集     2014.09

  • 計測曲線の美的意図に基づく数理的修正

    今井敏行

    日本応用数理学会2013年度年会講演予稿集     2013.09

  • Delaunay図構成への汎用退化対処法の適用

    今井敏行

    日本応用数理学会2013年度年会講演予稿集     2013.09

  • オペレーターオーバーローディングを利用した記号摂動による幾何プログラムの入力退化への汎用的自動対処の実現

    山本修作, 今井敏行

    日本応用数理学会2013年度年会講演予稿集     2013.09

  • 図形プログラムの入力退化とその対処

    今井敏行 (Part: Lead author )

    日本応用数理学会2012年度年会講演予稿集     2013.08

  • デザイナーの意図を考慮した描かれた曲線の数理的修正

    今井敏行 (Part: Lead author )

    日本応用数理学会2012年度年会講演予稿集     2012.08

  • 図形処理における入力退化の程度と簡易対処法

    今井敏行 (Part: Lead author )

    日本応用数理学会2011年度年会講演予稿集     2011.09

  • 測定された曲線のデザイナーの美的意図に基づく数理的修正

    今井敏行 (Part: Lead author )

    日本応用数理学会2010年度年会講演予稿集     2010.09

  • 多角形Voronoi図のStraight skeletonによる近似

    今井敏行 (Part: Lead author )

    日本応用数理学会2009年度年会講演予稿集     2009.09

  • Delaunay図から拡張flipにより生成される三角形分割

    今井敏行

    日本応用数理学会2008年度年会講演予稿集     2008.09

  • Delaunay図のflip型構成の一般化

    今井敏行

    日本応用数理学会2007年度年会講演予稿集     242 - 243   2007

  • 円のVoronoi図のflipによる位相的構成

    日本応用数理学会2006年度年会講演予稿集     206 - 207   2006

  • How to Confirm that a Planar Graph is a Voronoi Diagram for Convex Objects

    IMAI Toshiyuki

    IPSJ SIG Notes ( Information Processing Society of Japan (IPSJ) )  99 ( 5 ) 15 - 22   2005.01

     View Summary

    In Geometric processing, implementations of approximated algorithms or those of exact algorithms with numerical errors do not guarantee the the correctness of the output. For the construction of Voronoi diagrams for points, a theorem related to the Delaunay diagram, which is the dual of the Voronoi diagram for points, gives us a local test to confirm that the output is the correct Voronoi diagram. In this paper, the theorem is extended to apply to the construction of the Voronoi diagrams for convex objects and the proof is given. This theorem allows us to obtain the correct Voronoi diagram for some convex objects by using an approximated algorithm.

  • A Method for Determining the Topological Structure of Voronoi Diagram for Segments by Using Voronoi Diagram for Points

    WATANABE Hideomi, IMAI Toshiyuki

    IPSJ SIG Notes ( Information Processing Society of Japan (IPSJ) )  99 ( 5 ) 7 - 14   2005.01

     View Summary

    An approximate Voronoi diagram for segments can be constructed from the Voronoi diagram for points by replacing each segments with some points. There is no algorithm for approximate construction which guarantees that the topological structure of approximated diagram is exactly the same as the original Voronoi diagram for segments. This paper describes how to determine the topological structure of a Voronoi diagram for segments from the approximated one. First, all segments are replaced with the endpoints to construct the initial approximate Voronoi diagram for the endpoints and then the diagram is modified by adding internal points of the segments in certain manner until it is judged that the approximate diagram has the same topological structure as the original Voronoi diagram only by investigating Voronoi edges of the approximated diagram.

  • 点Voronoi図による線分Voronoi図の位相的に正しい近似構成法

    今井敏行 (Part: Lead author )

    日本応用数理学会2005年度年会講演予稿集   206-207   2005

  • 一般化Voronoi図の一貫性と局所フリップ不可能性について

    日本応用数理学会2004年度年会講演予稿集   452-453   2004

  • 剰余計算の並列化による誤差なし図形処理とその実装

    今井 敏行

    情報処理学会研究報告. AL, アルゴリズム研究会報告 ( 一般社団法人情報処理学会 )  89 ( 32 ) 41 - 48   2003.03

     View Summary

    計算機上での図形処理を厳密に行なうためには,比較的簡単な場合でも,入力データが1倍長の整数なら数倍長から数十倍長の誤差なし整数計算が必要である.入力が倍精度浮動小数点数で,誤差無しの計算を整数で行なうと数百倍長の整数計算が必要である.このとき,特に乗算に計算時間がかかる.本稿では,計算時間の増大を抑えるため剰余計算を用い,多倍長整数を復元することなく正負の符号判定を行なう方法を提案する.さらに,剰余を取る法ごとに計算を並列化させ,PCクラスタ上で実装する.また小規模な例について数値実験を行なった結果により,通信速度が問題であることを示す.

  • 幾何アルゴリズムの退化対処の剰余計算による実現

    日本応用数理学会2003年度年会講演予稿集   340-341   2003

  • 漢字テキストアートの字形を利用した高精細化

    日本応用数理学会2003年度年会講演予稿集   342-343   2003

  • Report on ICIAM 99 Edinburgh Part 2(Conference Reports)

    Tezuka Shu, Ushijima Takeo K., Imai Toshiyuki, Kubota Koichi

    Bulletin of the Japan Society for Industrial and Applied Mathematics ( The Japan Society for Industrial and Applied Mathematics )  10 ( 1 ) 66 - 69   2000

    DOI

  • Symbolic perturbation based on Gr(]E88D8[)bner basis

    Abstracts of the 4th ICIAM     104   1999

  • 一般化Voronoi図の領域面積の計算法

    日本応用数理学会1999年度講演予稿集     170 - 171   1999

  • 幾何的アルゴリズムの簡易な退化対処法とその実装

    日本応用数理学会1998年度年会講演予稿集     130 - 131   1998

  • A simple method to treet degeneracies in geometric programs

    Abst. 14th European Warkshop on Comp. Geom.     103 - 105   1998

  • An Algebra for Slope-Monotone Closed Curves.

    Kokichi Sugihara, Toshiyuki Imai, Takeshi Hataguchi

    Int. J. Shape Model.   3 ( 3-4 ) 167   1997  [Refereed]

    DOI

  • 幾何的アルゴリズムへの剰余計算の利用法

    日本応用数理学会1997年度年会講演予稿集     304 - 305   1997

  • Some methods to determine the sign of a long integer from its remainders.

    Toshiyuki Imai

    Proc. 9th Canadian Conf. in Comp. Geom.     117 - 122   1997

  • How to get the sign of integers from their residuals

    Toshiyuki Imai (Part: Lead author )

    Abstracts of the 9th Franco-Japanese Days on Combinatorics and Optimization     1996.10  [Refereed]

  • An Easy Method to Remove Degeneracies in Computational Geometry

    IMAI Toshiyuki

    IPSJ SIG Notes ( Information Processing Society of Japan (IPSJ) )  53 ( 96-AL-53 ) 103 - 110   1996.09

     View Summary

    Geometric algorithms sometimes fail in the degenerate cases even without numerical errors. lt is difficult to make or imprement an algorithm which can treat any degenerate cases. To reduce the difficulty, some methods how to treat degeneracy systematically were proposed. In this paper, we present a method to treat degenerate inputs systematically in Geometric algorithms. It computes data which is required in degenerate case when executing the algorithm, while conventional methods adapt the algorithm as preprocess to treat the degeneracy. That's why it has no merit of execution time but it is easy to apply the already impremented program without changing the algorithm essentially.

  • What Is the Inverse of Minkowski Addition?

    SUGIHARA Kokichi, IMAI Toshiyuki, HATAGUCHI Takeshi

    Technical report of IEICE. PRMU ( The Institute of Electronics, Information and Communication Engineers )  96 ( 140 ) 33 - 40   1996.06

     View Summary

    This paper proposes a new definition of the Minkowski addition for closed curves with certain properties. The conventional Minkowski addition call be considered as the binary operation for figures bounded by those closed curves. Conventionally, the inverse of this operation had been defined only for convex figures, whereas in the proposed definition the inverse can be defined naturally for all the closed curves.

  • A Topology Oriented Algorithm for the Voronoi Diagram of Polygons.

    Toshiyuki Imai

    Proc. 8th Canadian Conf. in Computational Geometry ( Carleton University Press )    107 - 112   1996

  • 新しいミンコフスキー和の提案(共著)

    日本応用数理学会平成8年度年会予稿集     278 - 279   1996

  • A Combinatorial-Structure Oriented Algorithm for Voronoi Diagrams of Polygons

    IMAI Toshiyuki

    IPSJ SIG Notes ( Information Processing Society of Japan (IPSJ) )  45 ( 95-AL-45 ) 17 - 24   1995.05

     View Summary

    An algorithm to construct Voronoi diagrams whose generators are points, line segments, chains and polygons is shown. This algorithm is adapted from a combinatorial-structure oriented algorithm for Voronoi diagrams of line segments. In this algorithm, Combinatorial structure of the diagrams is considered as prior information to numerical values. If the precision in computation is high enough for conventional algorithms to work well, this algorithm also constructs the correct Voronoi diagrams. Moreover, even when precision in computations is not enough, this algorithm ends up with a diagram as an output with several combinatorial properties which Voronoi diagrams must have. In this sense, this algorithm is robust against numerical error. This algorithm is designed in the assumption that numerical error exists ; hence it has not any exceptional rules for degeneracy but still works for degenerate cases.

  • A Combinatorial-Stracture Oriented Algorithm for Voronoi Diagrams of Polygons

    IPSJ SIG nots   ( 95-AL-45 ) 17 - 24   1995

  • 記号摂動法と剰余演算による符号判定法の応用

    日本応用数理学会平成7年度講演予稿集     204 - 205   1995

  • A Failure - free Algorithm for Constructing Voronoi Diagrams of Line Segments

    IMAI TOSHIYUKI, SUGIHARA KOKICHI

    IPSJ Journal ( Information Processing Society of Japan (IPSJ) )  35 ( 10 ) 1966 - 1977   1994.10

     View Summary

    Generalized Voronoi diagrams are not only theoretically interesting but also practically important. This paper presents a practical algorithm for constructing Voronoi diagrams of line segments. This algorithm is basically on incremental method but is modified by our new approach, called a topology-oriented approach, to a numerically robust algorithm. It is free from failure which otherwise comes from errors of computation. It always terminates normally with an output, and the output is guaranteed to have part of topological properties which the true solution should have. In ordinal levels of errors, the algorithm runs in O(n^2) time, which is no slower than conventional incremental methods. The time complexity is O(n^3) even in the worst case. The memory is O(n), which is theoretically optimal. Experiments on computers show that the practical performance of the algorithm was better than the above theoretical complexity.

  • Modular Methods to Determine the Sign of the Values of Polynomials and Their Applications to Computational Geometry

    Imai Toshiyuki

    IPSJ SIG Notes ( Information Processing Society of Japan (IPSJ) )  94 ( 35 ) 17 - 24   1994.05

     View Summary

    Not a few geometric algorithms determine signs of values of polynomials whose variables are input data to decide the structure of geometric objects and require double or triple long integer arithmetics such as addition, subrtaction and multiplication even if all the input data are integers of single length. In the standard method, multiple long integer arithmetic takes much time, especially in multiplication. It has been known that modular arithmetic reduces time of such calculations. Modular arithmetic, however, has to use multiple long integer arithmetics to get back the values themselves from their residues and it takes the same or more time compared to the standard method. In this paper, we show some techniques to determine the sign of a double or triple long integer directly from the result of modular arithmetic method, and show the performances of the applications to a geometric problem of making a convex hull.

  • 計算誤差に強い多角形Voronoi図の構成法

    日本応用数理学会 平成6年度年会講演予稿集     40 - 41   1994

  • Finger Treeを利用したマージソートの計算時間実測(共著)

    日本応用数理学会 平成5年度年会講演予稿集     243 - 244   1993

  • 計算誤差に強い線分Voronoi図の構成法

    応用数理学会平成4年度年会研究発表予稿集   243-244   1992

  • An algorithm to construct line segment Voronoi diagram robust against numerical errors

    Proc. Annu. National Conf. JSIAM   243-244   1992

  • Topology-oriented approach to robustness and its applications to several Voronoi-diagram algorithms (共著)

    Proceedings of the Second Canadian Conference in Computational Geometry     36 - 39   1990

  • 組合せ構造を優先した線分ボロノイ図の構成法

    情報処理学会研究報告89-AL-11   89 ( 89 )   1989

  • A Combinatorial-Structure Oriented Algorithm for Voronoi Diagrams of Line Segments

    IPSJ SIG Notes   89 ( 89 )   1989

▼display all

Awards & Honors

  • 電子情報通信学会猪瀬賞

    1999    

  • 電子情報通信学会論文賞

    1999    

KAKENHI

  • 位相的な厳密性を保証する近似アルゴリズム図形処理のフレームワーク

    2016.04
    -
    2019.03
     

    Grant-in-Aid for Challenging Exploratory Research  Principal investigator

  • 無誤差図形処理の並列剰余計算による高速化

    2001.04
    -
    2003.03
     

    奨励研究(A)  Principal investigator

  • 4次元幾何計算の数値的安定化とその応用

    1998.04
    -
    2001.03
     

    Grant-in-Aid for Scientific Research(B)  Co-investigator

  • 精度保証機能をもった幾何アルゴリズムの構成法

    1998.04
    -
    2001.03
     

    Grant-in-Aid for Scientific Research on Priority Areas(A)  Co-investigator

Instructor for open lecture, peer review for academic journal, media appearances, etc.

  • 投稿論文の査読

    2018.04
    -
    2018.05

    芸術科学会論文誌

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読,任期:1年

  • 投稿論文の査読

    2017.04
    -
    2017.06

    電気学会論文誌C

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読,任期:1年

  • 投稿論文の査読

    2016.04
    -
    2017.03

    Journal of Computational and Applied Matheamatics

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読,任期:1年

  • 投稿論文の査読

    2014.04
    -
    2015.03

    Journal of Computational and Applied Matheamatics

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読,任期:1年

  • オープンキャンパス入試数学解説

    2013.07

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2013.7

  • オープンキャンパス入試数学解説

    2012.07

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2012.7

  • 投稿論文の査読

    2012.06
    -
    2012.09

    Journal of Computational and Applied Matheamatics

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読,任期:1年

  • オープンキャンパス入試数学解説

    2011.07

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2011.7

  • オープンキャンパス入試数学解説

    2010.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2010.8

  • オープンキャンパス入試数学解説

    2009.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.
    ,日付:2009.8

  • オープンキャンパス入試数学解説

    2008.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2008.8

  • オープンキャンパス入試数学解説

    2007.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2007.8

  • オープンキャンパス入試数学解説

    2006.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2006.8

  • オープンキャンパス入試数学解説

    2005.08

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    オープンキャンパスで入試数学解説を行った.,日付:2005.8

▼display all

Committee member history in academic associations, government agencies, municipalities, etc.

  • 令和2年度向陽高等学校・中学校スーパーサイエンスハイスクール第1回運営指導委員会

    2020.07.30
    -
    2022.03.31
     

    和歌山県立向陽高等学校

     View Details

    スーパーサイエンスハイスクール

    ・今年度の計画等について
    ・第4期SSH申請について
    ・その他

  • 向陽高校SSH運営指導委員

    2020.04.01
    -
    Now
     

    和歌山県立向陽高等学校中学校

     View Details

    スーパーサイエンスハイスクール

    スーパーサイエンスハイスクール活動の運営指導,生徒発表会への参加と評価

  • 指導・助言

    2020.02
    -
    2020.03.31
     

    令和元年度向陽高等学校・中学校スーパーサイエンスハイスクール成果発表会及び第3回運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導・助言,任期:2020年2月~

  • 指導・助言

    2019.12
    -
    2020.03.31
     

    和歌山県立向陽高等学校 令和元年度和歌山県高等学校生徒科学研究発表会及び第2回SSH運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導・助言,任期:2019年12月~

  • 委員

    2019.05
    -
    2020.03
     

    和歌山県教育委員会 令和元年度スーパーサイエンスハイスクール運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2019年5月~2020年3月

  • 委員

    2019.04
    -
    2020.03
     

    理工系情報専攻・学科協議会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:1年間

  • 委員

    2018.05
    -
    2019.03
     

    平成30年度スーパーサイエンスハイスクール運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2018年5月~2019年3月

  • 指導・助言

    2017.12
    -
    Now
     

    平成29年度和歌山県高等学校生徒科学研究会及び第2回SSH運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    指導・助言,任期:2017年12月~

  • 委員

    2017.06
    -
    2018.03
     

    平成29年度スーパーサイエンスハイスクール運営指導委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2017年6月~2018年3月

  • 阪神支部Bブロック代議員

    2012.04
    -
    2013.03
     

    日本数学会

     View Details

    学協会、政府、自治体等の公的委員

    学協会、政府、自治体等の公的委員,任期:1年間

▼display all