Updated on 2024/06/17

写真a

 
HASHIMOTO Masato
 
Name of department
Faculty of Systems Engineering, Chemistry
Job title
Professor
Mail Address
E-mail address
Homepage
External link

Education

  • 1986
    -
    1991

    The University of Tokyo   Graduate School of Science   Department of Chemistry, MSc and PhD  

  • 1982
    -
    1986

    The University of Tokyo   Faculty of Science   化学  

Degree

  • Doctor of Science   1991

  • Master of Science   1988

Academic & Professional Experience

  • 2020.04
    -
    Now

    Wakayama University   評議員

  • 2015.04
    -
    2018.03

    和歌山大学システム工学部   副学部長

  • 2010.10
    -
    Now

    Wakayama University   システム工学部   Professor

  • 1997.04
    -
    2010.09

    Wakayama University, Associate professor   システム工学部   助教授(准教授)

  • 1994.05
    -
    1997.03

    Umeå University, Sweden, Posdoc researcher

  • 1991.04
    -
    1994.04

    The University of Tokyo, Research associate   工学部合成化学科   助手

▼display all

Association Memberships

  • 近畿工業化学会

  • ドイツ化学会

  • 日本結晶学会

  • 日本化学会

  • 王立化学会(イギリス)

  • 触媒学会

  • アメリカ化学会

  • IUPAC

▼display all

Research Areas

  • Nanotechnology/Materials / Inorganic and coordination chemistry / 無機合成化学、無機構造化学、無機溶液化学、ポリオキソメタレート、ペルオキソメタレート

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research)

  • 2023   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2023   Scientific and Technical English B   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Experiments in Applied Chemistry   Specialized Subjects

  • 2023   Advanced Lectures in Chemistry   Specialized Subjects

  • 2023   Experiments in Chemistry Ⅲ   Specialized Subjects

  • 2023   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2023   Experiments in Chemistry IV   Specialized Subjects

  • 2023   Structural Chemistry   Specialized Subjects

  • 2023   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2022   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2022   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2022   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2022   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2022   Structural Chemistry   Specialized Subjects

  • 2022   Scientific and Technical English B   Specialized Subjects

  • 2022   Advanced Lectures in Chemistry   Specialized Subjects

  • 2022   Experiments in Chemistry IV   Specialized Subjects

  • 2022   Experiments in Chemistry Ⅲ   Specialized Subjects

  • 2022   Experiments in Applied Chemistry   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Structural Chemistry   Specialized Subjects

  • 2021   Experiments in Chemistry Ⅲ   Specialized Subjects

  • 2021   Advanced Lectures in Chemistry   Specialized Subjects

  • 2021   Experiments in Applied Chemistry   Specialized Subjects

  • 2021   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2021   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Scientific and Technical English B   Specialized Subjects

  • 2021   Experiments in Chemistry IV   Specialized Subjects

  • 2021   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2021   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2021   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2021   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Experiments in Chemistry IV   Specialized Subjects

  • 2020   Experiments in Chemistry Ⅲ   Specialized Subjects

  • 2020   Scientific and Technical English B   Specialized Subjects

  • 2020   Experiments in Applied Chemistry   Specialized Subjects

  • 2020   Advanced Lectures in Chemistry   Specialized Subjects

  • 2020   Structural Chemistry   Specialized Subjects

  • 2020   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2020   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2020   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2020   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2020   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2019   Graduation Research   Specialized Subjects

  • 2019   Experiments in Chemistry Ⅲ   Specialized Subjects

  • 2019   Scientific and Technical English B   Specialized Subjects

  • 2019   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2019   Experiments in Applied Chemistry   Specialized Subjects

  • 2019   Advanced Lectures in Chemistry   Specialized Subjects

  • 2019   Structural Chemistry   Specialized Subjects

  • 2019   Introduction to Majors 2   Specialized Subjects

  • 2019   Introduction to Majors 2   Specialized Subjects

  • 2019   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2019   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2019   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2019   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2019   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2019   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2018   Structural Chemistry   Specialized Subjects

  • 2018   Exercises in Majors A   Specialized Subjects

  • 2018   Introduction to Majors 2   Specialized Subjects

  • 2018   Introduction to Majors 1   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Exercises in Majors C   Specialized Subjects

  • 2018   Exercises in Majors B   Specialized Subjects

  • 2018   Introduction to Majors 2   Specialized Subjects

  • 2018   Introduction to Majors 1   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Scientific and Technical English B   Specialized Subjects

  • 2018   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2018   Experiments in Applied Chemistry   Specialized Subjects

  • 2018   Advanced Lectures in Chemistry   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2018   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2018   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2018   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2018   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2018   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2018   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2018   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2017   Exercises in Majors C   Specialized Subjects

  • 2017   Exercises in Majors B   Specialized Subjects

  • 2017   Exercises in Majors A   Specialized Subjects

  • 2017   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2017   Structural Chemistry   Specialized Subjects

  • 2017   Introduction to Majors 2   Specialized Subjects

  • 2017   Introduction to Majors 2   Specialized Subjects

  • 2017   Introduction to Majors 1   Specialized Subjects

  • 2017   Introduction to Majors 1   Specialized Subjects

  • 2017   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2017   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2017   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2017   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2017   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2017   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2017   Inorganic Chemistry Ⅱ   Specialized Subjects

  • 2017   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2017   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2016   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2016   Structural Chemistry   Specialized Subjects

  • 2016   Exercises in Majors C   Specialized Subjects

  • 2016   Exercises in Majors B   Specialized Subjects

  • 2016   Exercises in Majors A   Specialized Subjects

  • 2016   Introduction to Majors 2   Specialized Subjects

  • 2016   Introduction to Majors 2   Specialized Subjects

  • 2016   Introduction to Majors 1   Specialized Subjects

  • 2016   Introduction to Majors 1   Specialized Subjects

  • 2016   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2016   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2016   Inorganic Chemistry Ⅰ   Specialized Subjects

  • 2015   Inorganic Chemistry A   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2015   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2015   Introduction to Majors 2   Specialized Subjects

  • 2015   Introduction to Majors 2   Specialized Subjects

  • 2015   Introduction to Majors 1   Specialized Subjects

  • 2015   Introduction to Majors 1   Specialized Subjects

  • 2015   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Inorganic Chemistry B   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2015   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2015   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2015   Exercises in Majors C   Specialized Subjects

  • 2015   Exercises in Majors B   Specialized Subjects

  • 2015   Exercises in Majors A   Specialized Subjects

  • 2015   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2014   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2014   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2014   Inorganic Chemistry B   Specialized Subjects

  • 2014   Inorganic Chemistry A   Specialized Subjects

  • 2014   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2014   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2014   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2014   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2014   Introduction to Material Science andChemistry   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2014   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2013   Graduation Research   Specialized Subjects

  • 2013   Graduation Research   Specialized Subjects

  • 2013   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2013   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2013   Inorganic Chemistry B   Specialized Subjects

  • 2013   Inorganic Chemistry A   Specialized Subjects

  • 2013   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2013   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2013   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2013   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2013   Introduction to Material Science andChemistry   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2013   Chemistry in Environments   Liberal Arts and Sciences Subjects

  • 2013   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2012   Graduation Research   Specialized Subjects

  • 2012   Inorganic Chemistry A   Specialized Subjects

  • 2012   Introduction to Material Science andChemistry   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2012   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2012   Chemistry in Environments   Liberal Arts and Sciences Subjects

  • 2012   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2012   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2012   Inorganic Chemistry B   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2012   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2012   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2011   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2011   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2011   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2011   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2011   Inorganic Chemistry B   Specialized Subjects

  • 2011   Inorganic Chemistry A   Specialized Subjects

  • 2011   Chemistry in Environments   Liberal Arts and Sciences Subjects

  • 2010   Graduation Research   Specialized Subjects

  • 2010   Chemistry in Environments   Specialized Subjects

  • 2010   Practices in Chemistry   Specialized Subjects

  • 2010   Inorganic Chemistry A   Specialized Subjects

  • 2010   Inorganic Chemistry B   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Graduation Research   Specialized Subjects

  • 2009   Chemistry in Environments   Liberal Arts and Sciences Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Introduction to Material Science andChemistry   Specialized Subjects

  • 2008   Graduation Research   Specialized Subjects

  • 2008   Chemistry in Environments   Liberal Arts and Sciences Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Graduation Research   Specialized Subjects

  • 2007   Chemistry in Environments   Liberal Arts and Sciences Subjects

▼display all

Classes

  • 2023   Systems Engineering SeminarⅠA   Master's Course

  • 2023   Systems Engineering SeminarⅠB   Master's Course

  • 2023   Systems Engineering SeminarⅡA   Master's Course

  • 2023   Systems Engineering SeminarⅡB   Master's Course

  • 2023   Chemistry of Inorganic Reactions   Master's Course

  • 2023   Systems Engineering Project SeminarⅠA   Master's Course

  • 2023   Systems Engineering Project SeminarⅠB   Master's Course

  • 2023   Systems Engineering Project SeminarⅡA   Master's Course

  • 2023   Systems Engineering Project SeminarⅡB   Master's Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Advanced Research   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Project SeminarⅡB   Master's Course

  • 2022   Systems Engineering Project SeminarⅡA   Master's Course

  • 2022   Systems Engineering Project SeminarⅠB   Master's Course

  • 2022   Systems Engineering Project SeminarⅠA   Master's Course

  • 2022   Chemistry of Inorganic Reactions   Master's Course

  • 2022   Systems Engineering SeminarⅡB   Master's Course

  • 2022   Systems Engineering SeminarⅡA   Master's Course

  • 2022   Systems Engineering SeminarⅠB   Master's Course

  • 2022   Systems Engineering SeminarⅠA   Master's Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Project SeminarⅡB   Master's Course

  • 2021   Systems Engineering Project SeminarⅡA   Master's Course

  • 2021   Systems Engineering Project SeminarⅠB   Master's Course

  • 2021   Systems Engineering Project SeminarⅠA   Master's Course

  • 2021   Chemistry of Inorganic Reactions   Master's Course

  • 2021   Systems Engineering SeminarⅡB   Master's Course

  • 2021   Systems Engineering SeminarⅡA   Master's Course

  • 2021   Systems Engineering SeminarⅠB   Master's Course

  • 2021   Systems Engineering SeminarⅠA   Master's Course

  • 2020   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Advanced Research   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Project SeminarⅡB   Master's Course

  • 2020   Systems Engineering Project SeminarⅡA   Master's Course

  • 2020   Systems Engineering Project SeminarⅠB   Master's Course

  • 2020   Systems Engineering Project SeminarⅠA   Master's Course

  • 2020   Chemistry of Inorganic Reactions   Master's Course

  • 2020   Systems Engineering SeminarⅡB   Master's Course

  • 2020   Systems Engineering SeminarⅡA   Master's Course

  • 2020   Systems Engineering SeminarⅠB   Master's Course

  • 2020   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Chemistry of Inorganic Reactions   Master's Course

  • 2019   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2019   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2019   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering SeminarⅡB   Master's Course

  • 2019   Systems Engineering SeminarⅡA   Master's Course

  • 2019   Systems Engineering SeminarⅠB   Master's Course

  • 2019   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Systems Engineering Project SeminarⅡB   Master's Course

  • 2019   Systems Engineering Project SeminarⅠB   Master's Course

  • 2019   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2018   Systems Engineering Project SeminarⅡB   Master's Course

  • 2018   Systems Engineering Project SeminarⅡA   Master's Course

  • 2018   Systems Engineering Project SeminarⅠB   Master's Course

  • 2018   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering SeminarⅡB   Master's Course

  • 2018   Systems Engineering SeminarⅡA   Master's Course

  • 2018   Systems Engineering SeminarⅠB   Master's Course

  • 2018   Systems Engineering SeminarⅠA   Master's Course

  • 2018   Chemistry of Inorganic Reactions   Master's Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Project SeminarⅡB   Master's Course

  • 2017   Systems Engineering Project SeminarⅡA   Master's Course

  • 2017   Systems Engineering Project SeminarⅠB   Master's Course

  • 2017   Systems Engineering Project SeminarⅠA   Master's Course

  • 2017   Chemistry of Inorganic Reactions   Master's Course

  • 2017   Systems Engineering SeminarⅡB   Master's Course

  • 2017   Systems Engineering SeminarⅡA   Master's Course

  • 2017   Systems Engineering SeminarⅠB   Master's Course

  • 2017   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Project SeminarⅡB   Master's Course

  • 2016   Systems Engineering Project SeminarⅡA   Master's Course

  • 2016   Systems Engineering Project SeminarⅠB   Master's Course

  • 2016   Systems Engineering Project SeminarⅠA   Master's Course

  • 2016   Systems Engineering SeminarⅡB   Master's Course

  • 2016   Systems Engineering SeminarⅡA   Master's Course

  • 2016   Systems Engineering SeminarⅠB   Master's Course

  • 2016   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Chemistry of Inorganic Reactions   Master's Course

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡA  

  • 2015   Systems Engineering SeminarⅠA  

  • 2015   Systems Engineering Project SeminarⅡA  

  • 2015   Systems Engineering Project SeminarⅠA  

  • 2015   Systems Engineering Global Seminar Ⅰ  

  • 2015   Chemistry of Inorganic Reactions  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡB  

  • 2015   Systems Engineering SeminarⅠB  

  • 2015   Systems Engineering Project SeminarⅡB  

  • 2015   Systems Engineering Project SeminarⅠB  

  • 2015   Systems Engineering Global Seminar Ⅰ  

  • 2014   Systems Engineering Global Seminar Ⅱ  

  • 2014   Systems Engineering Global Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Project SeminarⅡB  

  • 2014   Systems Engineering Project SeminarⅡA  

  • 2014   Systems Engineering Project SeminarⅠB  

  • 2014   Systems Engineering Project SeminarⅠA  

  • 2014   Solid State Chemistry  

  • 2014   Systems Engineering SeminarⅡB  

  • 2014   Systems Engineering SeminarⅡA  

  • 2014   Systems Engineering SeminarⅠB  

  • 2014   Systems Engineering SeminarⅠA  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Project SeminarⅡB  

  • 2013   Systems Engineering Project SeminarⅡA  

  • 2013   Systems Engineering Project SeminarⅠB  

  • 2013   Systems Engineering Project SeminarⅠA  

  • 2013   Solid State Chemistry  

  • 2013   Systems Engineering SeminarⅡB  

  • 2013   Systems Engineering SeminarⅡA  

  • 2013   Systems Engineering SeminarⅠB  

  • 2013   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡA  

  • 2012   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Project SeminarⅡA  

  • 2012   Systems Engineering Project SeminarⅠA  

  • 2012   Solid State Chemistry  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡB  

  • 2012   Systems Engineering SeminarⅠB  

  • 2012   Systems Engineering Project SeminarⅡB  

  • 2012   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅡB  

  • 2011   Systems Engineering Project SeminarⅡA  

  • 2011   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅠA  

  • 2011   Systems Engineering Advanced Research  

  • 2011   Systems Engineering Advanced Research  

  • 2011   NA  

  • 2011   NA  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Solid State Chemistry  

  • 2010   Solid State Chemistry   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2009   Reactions of Coordination Compounds   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2008   Reactions of Coordination Compounds   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2007   Reactions of Coordination Compounds   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

▼display all

Research Interests

  • synthetic inorganic chemistry

  • polyoxometalate

  • peroxometalate

  • structural inorganic chemistry

Published Papers

  • Control over the preference for binding sites of polyoxometalates to silver ethynide clusters by surface charge modification

    Sho Tamari, Kosuke Ono, Masato Hashimoto, Tomoji Ozeki

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  44 ( 44 ) 19056 - 19058   2015  [Refereed]

     View Summary

    A polyoxometalate-silver ethynide composite cluster, [Ag-42(CO3)-{ C = CC(CH3)(3)}(27)(alpha-A-SiW9Nb3O40)(2)](-) (1), demonstrates that we can select the binding site of a polyoxometalate to the silver alkynide cluster by tuning the surface charge of the precursor polyoxometalate. Multidimensional and multinuclear NMR spectra revealed that 1 maintains its precise atomic connectivity in the solution.

    DOI

  • Synthesis, structure and spectroscopic analyses of aquachloridooxidodiperoxidomolybdate(VI)

    Masa-aki Saito, Masato Hashimoto

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  43 ( 2 ) 402 - 405   2014  [Refereed]

     View Summary

    A novel aquachloridooxidodiperoxidomolybdate(VI), [MoClO(O-2)(2)(OH2)](-), was crystallised as tetraethylammonium and triethylmethylammonium salts from strongly acidic aqueous solutions, and was structurally analysed by single crystal X-ray diffraction and NMR spectroscopy. The aqueous behaviour of the present anion observed by O-17 NMR agrees with that reported in a previous speciation study.

    DOI

  • Calcium and strontium salts of (glycinato-κ2 N,O)oxidobis(peroxido-κ2O,O′)vanadate(V) tetrahydrate

    Takeshi Higuchi, Ayana Uchida, Masato Hashimoto

    Acta Crystallographica Section C: Crystal Structure Communications   69 ( 12 ) 1494 - 1497   2013.12  [Refereed]

     View Summary

    The title salts calcium (glycinato-κ2 N,O) oxidobis(peroxido-κ2 O,O′)vanadate(V) tetrahydrate, Ca[VO(O2)2(NH2CH2COO)] ·4H2O, and strontium (glycinato-κ2 N,O)oxidobis(peroxido-κ2 O,O′)vanadate(V) tetrahydrate, Sr[VO(O2)2(NH2CH2COO)] ·4H2O, crystallized at pH ca 7.4 with similar lattice parameters. The glycinate anion acts as a bidentate N,O-chelating ligand, and the V atom has a pentagonal bipyramidal geometry, with two η2- peroxo groups and the glycinate N atom in the equatorial plane, and one terminal oxo and a glycinate O atom at the axial positions. The H atoms of three of the four water molecules in the strontium salt exhibited disorder over three positions for each molecule. © 2013 International Union of Crystallography.

    DOI

  • Dipotassium Diaquadiphosphatooctaperoxotetramolybdate, [K-2(P2O7){MoO(O-2)(2)}(2){MoO(O-2)(2)(OH2)}(2)](2-) - a One-Dimensional Double Chain Array of Polyanions Linked by Potassium Cations

    Koji Aoki, Keisuke Iwata, Takahiro Iwata, Masato Hashimoto

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY ( WILEY-V C H VERLAG GMBH )  ( 10-11 ) 1808 - 1814   2013.04  [Refereed]

     View Summary

    A dipotassium diaquadiphosphatooctaperoxotetramolybdate, [K2(P2O7){MoO(O2)2}2{MoO(O2)2(OH2)}2]2, was crystallised as a tetramethylammonium salt and its structure was determined by single-crystal X-ray diffraction. The diaquadiphosphatooctaperoxotetramolybdate moiety (POPMo4) consists of four molybdenum decahedra and one 4-diphosphate group. All Mo atoms bear two peroxo groups at their equatorial positions. Two of the four Mo atoms are also coordinated by a water molecule. The four molybdenum decahedra are separated and linked by the diphosphate group. The POPMo4 moieties are linked by potassium atoms to form an infinite anionic 1D double chain. The chains are connected by hydrogen bonds to water of crystallisation molecules to form a 2D network. POPMo4 or its precursor gives a 31P NMR signal at = 7.3 ppm in the reaction solution and is stable at low pH and a high Mo/diphosphate molar ratio.

    DOI

  • Potassium, rubidium and ammonium salts of -(formato-2O:O)--oxido-bis[oxidobis(peroxido-2O,O)molybdate(VI)]

    Masaki Takehara, Masato Hashimoto

    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS ( WILEY-BLACKWELL )  69   37 - +   2013.01  [Refereed]

     View Summary

    The unit-cell parameters of the three title salts, namely, tripotassium, K3[Mo2(CHO2)O3(O2)4], trirubidium, Rb3[Mo2(CHO2)O3(O2)4], and triammonium -(formato-2O:O)--oxido-bis[oxidobis(peroxido-2O,O)molybdate(VI)], (NH4)3[Mo2(CHO2)O3(O2)4], which were all crystallized at pH 3, are quite similar, but the potassium and rubidium salt structures are noncentrosymmetric, whereas that of the ammonium salt is centrosymmetric. Formate acts as an O:O-bridging ligand in the complex anion and is bound to a -oxido-bis(oxidodiperoxidomolybdate) unit.

    DOI

  • Bis(trimethylphenylammonium) μ-oxalato-bis[oxidodiperoxidomolybdate(VI)]

    Ayaka Oba, Masato Hashimoto

    Acta Crystallographica Section E: Structure Reports Online   68 ( 12 ) m1467   2012.12  [Refereed]

     View Summary

    A trimethylphenylammonium salt of a dinuclear μ-oxalate complex of diperoxidomonomolybdate units, (C9H14N)2[Mo2(C2O4)(O2)4O2], was obtained from an acidic aqueous solution
    the dianion is located about a centre of inversion. Each Mo atom bears two peroxide groups together with one O atom from the oxalate group in its equatorial positions and one terminal O atom as well as another O atom from the oxalate in axial positions. The oxalate group acts as a tetradentate bridging ligand and bridges between the diperoxidomolybdate units.

    DOI

  • Role of p(Z)-pi(Ar/Nap) conjugation in structures of 1-(arylchalcogena)-naphthalenes for Z = Te versus Se, S and O: experimental and theoretical investigations

    Takahito Nakai, Mitsuhiro Nishino, Satoko Hayashi, Masato Hashimoto, Waro Nakanishi

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  41 ( 25 ) 7485 - 7497   2012  [Refereed]

     View Summary

    Magnitudes of the p(Z)-pi(Ar/Nap) conjugation were evaluated for 1-(arylchalcogena)naphthalenes (1-(ArZ)Nap, 1-(p-YC(6)H(4)Z)C10H7; 1 (Z = Te), 2 (Se), 3 (S) and 4 (O)). Structures of 1 were determined by X-ray analysis for Y = NMe2 (b), OMe (c) and CN (i). For 1b and 1c that have electron donating Y, the Z-C-Ar bond is located on the naphthyl plane with Z-C-Nap being perpendicular to the aryl plane, which we define as (B: pd). On the other hand, the structure of 1i with electron donating Y is (A: pl), of which Z-C-Ar is placed almost perpendicular to the naphthyl plane with Z-C-Nap being located on the aryl plane. Each structure of 1a (Y = H), 1b, 1c, 1d (Me), 1e (F), 1f (Cl), 1g (Br), 1h (COOEt), 1i and 1j (NO2) was determined by NMR in chloroform-d. Structures of 1 in the solutions are (B: pd) for b, c and e that have electron donating Y, (A: pl) for f-j with electron accepting Y, and in equilibrium between (B: pd) and (A: pl) for a and d of which Yare rather neutral. The results for 2-4 are very similar to those of 1 in solutions. Quantum chemical calculations were performed on 1-4 with Yof a, b' (NH2), d, f and j. Magnitudes of the p(Z)-pi(Ar/Nap) conjugation were well-evaluated by NBO (natural bond orbital) analysis. The values were 12.6 and 13.0 kcal mol(-1) for the typical forms of (A: pl) and (B: pd) of 1a, respectively, resulting in a much smaller energy difference between the two (0.4 kcal mol(-1)), which should correspond to the observed result. It is well-demonstrated that the p(Te)-p(Ar/Nap) conjugation operates effectively in 1, although the magnitudes increase in the order of Z = Te < Se < S < O. Thermal effect of the Gibbs free energies is shown to play an important role in the energy profiles of 1a-4a.

    DOI

  • A P-31-NMR study of the H+-MoO42--(HP)O-3(2-)-HPO42--(C6H5P)O-3(2-)-(CH3P)O-3(2-) system at low Mo-tot/P-tot ratio - Formation of mixed-hetero X2M5-type polyanions

    Masato Hashimoto, Ingegaerd Andersson, Lage Pettersson

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  ( 17 ) 3321 - 3327   2009  [Refereed]

     View Summary

    Formation of X2M5-type heteropolyanions in the aqueous mixed-hetero H+-MoO42--(HP)O-3(2-)-HPO42--(C6H5P)O-3(2-)- (C6H3P)O-3(2-) system has been studied by P-31-NMR at [Mo](tot)/[P-all](tot) = 1.5 at 298(1) K in 0.600 M Na(Cl) ionic medium. The -log[H+] range 1.4-6.2 has been covered. The pK(a) values of methylphosphonate were determined from P-31-NMR chemical shift data in the range of 0 < -log[H+] < 13.2 as H(CH3P)O-3(-) 7.30 and H-2(CH3P)O-3 2.05. All four-component H+-MoO42--P1-P2 subsystems (P1 and P2 are two of the four phosphorus-containing components), except H+-MoO(4)2(-)-(HP)O-3(2-)-HPO42-, which has been studied previously, were examined instead of the full six-component system in order to simplify the evaluation of the NMR spectra. The concentrations were adjusted to [Mo](tot) = 60 mM and [P1](tot) = [P2](tot) = 20 mM in the measurements. All conceivable P2M5 and (P1)(P2)M5 heteropolyanions were identified. The following novel X2M5-type polyanions were found and their formation constants are given in logarithmic values with 36 in parentheses: (CH3P)(2)Mo5O214- 69.68(7), (HP)(C6HSP)Mo5O214- 67.09(4), (C6H5P)PMo5O225- 63.23(5), H(C6H5P)PMo5O224- 68.11(4), (HP)(CH3P)Mo5O214-- 67.85(4), (CH3P)PMo5O225- 64.14(7), H(CH3P)Mo5O224- 68.89(4) and (C6H5P)(CH3P)Mo5O214- 69.18(4). The equilibrium conditions are illustrated in distribution diagrams. Phosphite proved to bind more weakly in X2M5-type polyoxometallates than phosphate or phosphonates, which are almost equally favoured in complexation.

    DOI

  • Preparation and Characterization of an alpha-Wells-Dawson-Type [V2Mo18O62](6-) Complex

    Sadayuki Himeno, Keishi Kawasaki, Masato Hashimoto

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  81 ( 11 ) 1465 - 1471   2008.11  [Refereed]

     View Summary

    An orange-yellow vanadomolybdate complex was prepared by heating a 100 mM Mo-VI-20 mM V-V-0.45 M HCl-20% (v/v) CH3CN system at 70 degrees C for 24 h, being isolated as the tetrapropylammonium (Pr4N+) salt. The Pr4N+ salt crystallized in the orthorhombic space group P2(1)2(1)2; the lattice constants were a = 18.417(4), b = 20.869(5), c = 15.280(3) angstrom, V = 5873(2) angstrom(3), and Z = 2. The crystallographic study revealed that the structure consists of The alpha-Wells-Dawson-type [V2Mo18O62](6-) anion, in which vanadates serve as the central tetrahedra. alpha-[V2Mo18O62](6-) complex underwent a two-step one-electron reduction in CH3CN, and the presence of acid caused the one-electron waves to be converted into three two-electron waves. The formation conditions were elucidated by V-51 NMR measurements.

    DOI

  • An equilibrium analysis of the aqueous H+-MoO42--(HP)O-3(2-)-H+MoO42--(HP)O-3(2-)-(HPO)(4)(2-) and systems

    Masato Hashimoto, Ingegaerd Andersson, Lage Pettersson

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  ( 1 ) 124 - 132   2007.01  [Refereed]

     View Summary

    The speciation in the phosphitomolybdate system, H+-MoO42--(HP)O-3(2-), has been determined from combined potentiometric and P-31 NMR measurements in 0.600 M Na(Cl) medium at 298(1) K. Potentiometric titration data were collected in the ranges 2.5 < -log[H+] < 6.2, 40.0 <= [Mo](tot) <= 240.0 mM, 10.0 <= [P](tot) <= 40.0 mM and l <= [Mo](tot)/[P](tot) <= 10. P-31 NMR data were collected in the same ranges with the exception that -log[H+] was decreased to 0.8. The pK(a) values of phosphite were determined by means of potentiometric (1.5 < -log[H+] < 8.6) and P-31 NMR chemical shift data (0.0 < -log[H+] < 12.0). The following log beta (3 sigma) values were deduced: H(HP)O-3(-), 6.09(2); H-2(HP)O-3, 7.23(4) (pK(a) = 1. 14). In the phosphitomolybdate system, the following complexes were found along with their formation constants ((HP) denotes phosphite): Mo-5(HP)(2)(4-), 65.31(4); Mo-6(HP)(2)(5-), 71.94(5); Mo-5(HP)(4-), 51.25(8); Mo-5(HP)(3-), 54.9(3); Mo-6(HP)(2-), 68.99(9); Mo-7(Hp)(5-), 71.25(3); Mo-7(HP)(4-), 74.2(2). Because hydrolysis and oxidation of phosphite to phosphate were observed by NMR, with a mixed-hetero species of low [Mo](tot)/[P](tot) ratio being detected, the four-component H+-MoO42-(HP)-O-3(2-)-HPO42- system was also studied in the same way over the range 0.8 < -log[H+] < 6.2 and [Mo](tot)/[P](tot) fixed at 1.5. The following mixed heteropolyanion species have been found (P denotes the phosphate group): Mo-5(HP)P5-, 62.27(6); Mo-5(HP)P4-, 66.76(4). The equilibrium speciation in the two systems are illustrated by distribution diagrams. In addition, the aqueous structures are proposed for all the species formed in the systems.

    DOI

  • Preparation, structure, and characterization of a novel diphosphoheptadecatungstate complex, [(P2O7)W17O51](4-)

    S Himeno, T Katsuta, M Takamoto, M Hashimoto

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  79 ( 1 ) 100 - 105   2006.01  [Refereed]

     View Summary

    A novel diphosphoheptadecatungstate complex, [(P2O7)W17O51](4-) was prepared from a 200 mM (M = mol dm(-3)) W(VI)-10 mM P2O74--0.6 M HCl-40% (v/v) CH3CN system, and characterized by IR, UV-vis, P-31 NMR, and W-183 NMR spectroscopy, and voltammetry. Single-crystal X-ray analysis was made on [(C2H5)(4)N](4)[(P2O7)W17O51]center dot CH3CN, which crystallized in the monoclinic space group P2(1)/n, with cell parameters a = 16.1877(8), b = 22.103(1), c = 21670(1) angstrom, beta = 90.847(1)degrees, V = 8110.3(7) angstrom(3), and Z = 4. The anion consists of a PW8O31 fragment derived from a beta-Keggin-type [PW12O40](3-) structure, and two PW8O31 units are linked by five oxygen atoms and a WO5 square pyramid. The [(P2O7)W17O51](4-) anion exhibited a four-step reversible one-electron redox wave in CH3CN, and a three-step two-electron redox wave resulted in the presence of acid. This is the first example of an electrochemically-active diphosphotungstate complex.

    DOI

  • First transition metal complex of 1,8-bis(dimethylamino)naphthalene (proton sponge)

    T Yamasaki, N Ozaki, Y Saika, K Ohta, K Goboh, F Nakamura, M Hashimoto, S Okeya

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  33 ( 7 ) 928 - 929   2004.07  [Refereed]

     View Summary

    First transition metal complexes of 1,8-bis(dimethyl-amino)naphthalene (proton sponge), N,N'-chelated Pd(II) complexes, were prepared and the strong coordination ability of the proton sponge was demonstrated. The high transition energy for the coordination could be lowered by the existence of the intermediate charge-transfer complex which was isolated.

    DOI

  • Preparation and characterization of an alpha-Keggin-type [SW12O40](2)-complex

    S Himeno, M Takamoto, M Hoshiba, A Higuchi, M Hashimoto

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  77 ( 3 ) 519 - 524   2004.03  [Refereed]

     View Summary

    A divanadium-substituted derivative of 12-tungstosulfate(VI), [S(V2W10)O-40](4-) was prepared as the tetrabutylammonium (n-Bu4N+) salt by heating a 50 nM (M = mol dm(-3)) W(VI)-20 mM V(V)-0.5 M H2SO4-50% (v/v) CH3CN system at 70 degreesC for 24 h. The [S(V2W10)O-40](4-) anion Was transformed spontaneously into a monovanadium-substituted derivative, [S(VW11)O-40](3-) in a 70% (v/v) CH3CN-1.0 M HCl system at 70 degreesC. Oil the other hand, [SW12O40](2-) was precipitated as the n-Bu4N+ salt upon heating a 95% (v/v) CH3CN-0.5 M HCl system containing [S(V2W10)O-40](4-). The single-crystal X-ray structural analysis revealed that the structure consisted of an alpha-Keggin-type [SW12O40](2-) anion. The [SW12O40](2-) anion was characterized by IR and UV-vis spectroscopy, and voltammetry.

    DOI

  • Synthesis and Crystal Structure of Cs<sub>2</sub>(CN<sub>3</sub>H<sub>6</sub>)<sub>3</sub>[(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH<sub>2</sub>][W<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>].3H<sub>2</sub>O

    Hiroyuki Suzuki, Masato Hashimoto, Seichi Okeya

    Eur. J. Inorg. Chem.     2632 - 2634   2004  [Refereed]

  • Synthesis and structural characterization of [HxCp*TiMo5O18]((3-x)-) (x=0, 1, 2); new insights into protonation patterns in polyoxometalates

    H Akashi, J Chen, H Hasegawa, M Hashimoto, T Hashimoto, T Sakuraba, A Yagasaki

    POLYHEDRON ( PERGAMON-ELSEVIER SCIENCE LTD )  22 ( 20 ) 2847 - 2854   2003.09  [Refereed]

     View Summary

    Reaction Of [(n-C4H9)(4)N](2)[Mo2O7], Cp*TiCl3, and [(n-C4H9)(4)N]OH in CH3CN yields [(n-C4H9)(4)N](3)[Cp*TiMo5O18].CH3CN [a = 12.863(4) Angstrom b = 26.608(6) Angstrom, c = 24.534(4) Angstrom, beta = 103.88(2)degrees, Z = 4, space group P2(1)/c (no. 14)]. Similar reaction without [(n-C4H9)(4)N]OH yields monoprotonated complex [(n-C4H9)(4)N](2)[HCp*TiMo5O18], where, according to a single-crystal X-ray diffraction study [a = 19.9550(4) Angstrom, b = 25.5420(8) Angstrom, c = 11.8820(3) Angstrom, beta = 100.31(2)degrees, Z = 4, space group P2(1)/n (no. 14)], the anion is protonated at one of OMo2 doubly-bridging oxygens. Reaction of [(n-C4H9)(4)N](2)[HCp*TiMo5O18] with CCl3COOH in CHCl3 followed by crystallization from CH3CN/Et2O yields diprotonated [(n-C4H9)(4)N][H2Cp*TiMO5O18].1/4(C2H5)(2)O, which, according to a single-crystal X-ray diffraction study [a = 12.319(2) Angstrom, b = 16.105(3) Angstrom, c = 12.001(2) Angstrom, alpha = 110. 74(1)degrees, beta = 100.31(2)degrees, gamma = 82.777(5) Z = 2, space group P (1) over bar (no. 2)], contains hydrogen-bonded dimers of [H,,Cp*TiMo5O19](-) ions. The [Cp*TiMo5O18](3-) is basic enough to form stable organometallic adducts like [(eta-C8H12)Ir(Cp*TiMo5O18)](2-) and [(eta-C8H14)Rh(Cp*TiMo5O18)](2-). (C) 2003 Elsevier Ltd. All rights reserved.

    DOI

  • O-17 NMR study of aqueous peroxoisopolymolybdate equilibria at lower peroxide/Mo ratios

    L Pettersson, Andersson, I, F Taube, Toth, I, M Hashimoto, OW Howarth

    DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  ( 1 ) 146 - 152   2003  [Refereed]

     View Summary

    Aqueous peroxomolybdates have been studied using O-17 NMR together with equilibrium measurements and calculations, over a wide range of conditions. Ten peroxo species are identified, mostly in more than one state of protonation. Some are already known in the solid state, or from equilibrium analysis, but structural information is also obtained for MoO3 (HO2)(-) and the new or previously tentative species Mo2O5 (O-2)(2)(2-), HpMo7O23 (O-2)(2)(p-6) and HpMo7O23 (O-2)(p-6) (p = 0-2). Sites of protonation are identified, as are O-17 resonances from both bidentate and monodentate peroxide. Several oxygen exchange processes are also seen, including a probable dimer-tetramer exchange.

    DOI

  • A breathing ionic crystal displaying selective binding of small alcohols and nitriles: K-3[Cr3O(OOCH)(6)(H2O)(3)][alpha-SiW12O40]center dot 16H(2)O

    S Uchida, M Hashimoto, N Mizuno

    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION ( WILEY-V C H VERLAG GMBH )  41 ( 15 ) 2814 - +   2002  [Refereed]

  • [Ni(H<sub>2</sub>O<sub>6</sub>)]<sub>2</sub>[Na(H<sub>2</sub>O)<sub>3</sub>]<sub>2</sub> V<sub>10</sub>O<sub>28</sub>・4H<sub>2</sub>O

    Tomoyuki Higami, Masato Hashimoto, Seichi Okeya

    Acta Crystallogr. Sect. C   C58   i144 - i146   2002  [Refereed]

  • Characterisation of aqueous peroxomolybdate catalysts applicable to pulp bleaching

    F Taube, M Hashimoto, Andersson, I, L Pettersson

    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS ( ROYAL SOC CHEMISTRY )  ( 6 ) 1002 - 1008   2002  [Refereed]

     View Summary

    The equilibrium speciation in the system p H++ q MoO42-+ rH(2)O(2) + sSO(4)(2-) reversible arrow(H+)(p) (MoO42-)(q) (H2O2)(r) (SO42-)s in 0.300 M Na-2 (SO4) medium at 25 degreesC has been determined from potentiometric titration data in the ranges 2.0 less than or equal topH less than or equal to5.5, 5.00 less than or equal to[Mo](tot)/mM less than or equal to80.00, 0 less than or equal to[H2O2](tot)/mM less than or equal to245 and 273.07 less than or equal to[SO42-](tot)/mM less than or equal to320.20. Species with the following compositions were found: MoX- (1,1,1,0), MoX (2,1,1,0), MoX2- (1,1,2,0), MoX2 (2,1,2,0), MoX2S2- (2,1,2,1), Mo2X42- (2,2,4,0), Mo7X6- (8,7,1,0), Mo7X5- (9,7,1,0), Mo7X4- (10,7,1,0) and Mo7X3- (11,7,1,0). The numbers in parentheses refer to the values of p, q, r and s in the formula above. The numbers and charges of molybdenum (Mo), peroxide (X) and sulfate (S) in each species are given in the abbreviated formula MoqXrSs(2q + 2s - p)-. The following formation constants with 3sigma were obtained; logbeta(1,1,1,0) = 8.53 +/- 0.03, log beta(2,1,1,0) = 11.22 +/- 0.04 (pK(a) = 2.69), log beta(1,1,2,0) = 11.61 +/- 0.03, log beta(2,1,2,0) = 13.77 (+/- 0.06) (pK(a) = 2.16), log beta(2,1,2,1) = 14.50 +/- 0.06, log beta(2,2,4,0) = 23.77 +/- 0.11, log beta(8,7,1,0) = 56.71 +/- 0.11, log beta(9,7,1,0) = 62.00 +/- 0.05 (pK(a) = 5.29), log beta(10,7,1,0) = 65.74 +/- 0.06 (pK(a) = 3.74), log beta(11,7,1,0) = 68.23 +/- 0.08 (pK(a) = 2.49). Most complexes have been verified by Mo-95 NMR, O-17 NMR, and the novel MoX2S2- complex also by FTIR spectroscopy.

    DOI

  • Origin of microporosity of ammonium dodecatungstophosphate unveiled by single crystal structure analysis

    T Ito, M Hashimoto, S Uchida, N Mizuno

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 12 ) 1272 - 1273   2001.12  [Refereed]

     View Summary

    The single crystals of ammonium dodecatungstophosphate were successfully synthesized and the structure was analyzed. The intrinsic crystal structure (cubic, Pn (3) over barm) had no cavity. It follows that the microporosity observed for the powdery sample originated from narrow spaces surrounded by the fine nanocrystallites.

  • Synthesis, structure, and characterization of an alpha-Dawson-type [S2W18O62](4-) complex

    S Himeno, H Tatewaki, M Hashimoto

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  74 ( 9 ) 1623 - 1628   2001.09  [Refereed]

     View Summary

    A yellow sulfatotungstate complex was formed by heating a 50 mM W(Vl)-2 M H2SO4-40% (v/v) CH3CN system at 70 degreesC for 14 days, being isolated as the tetrapropylammonium (n-Pr4N+) salt. An X-ray structural analysis (orthorhombic, Pca2(1) (No. 29) a = 27.181(1), b = 14.1428(6), c = 27.7292(9) Angstrom, and Z = 4) revealed that the structure consists of an alpha -Dawson-type [S2W18O62](4-) anion. The alpha-[S2W18O62](4-) complex underwent a four-step reversible one-electron reduction in CH3CN, and the presence of acid caused the one-electron waves to be converted into three two-electron waves. The formation conditions were elucidated by a combined Raman and voltammetric study.

    DOI

  • A P-31-NMR study of peroxo species formed during oxidation of cyclohexene with hydrogen peroxide in tri-n-butylphosphate catalyzed by heteropolyacids

    M Hashimoto, K Itoh, KY Lee, M Misono

    TOPICS IN CATALYSIS ( KLUWER ACADEMIC/PLENUM PUBL )  15 ( 2-4 ) 265 - 271   2001  [Refereed]

     View Summary

    In the oxidation of cyclohexene with H2O2 in monophasic tri-n-butylphosphate (TBP) solution catalyzed by Keggin-type 12-heteropolyacids, i.e., H3PMo12-xWxO40 (x = 0-12), several peroxo species were observed by P-31-NMR spectroscopy in lower field than the original heteropolyacids. Their composition varied regularly with that of the starting catalyst. The P-containing peroxo species formed was deduced as [PM4O8(O-2)(8)](3-) (M = Mo, W). The peroxo species formed more easily with a decrease in the W content, x of H3PMo12-xWxO40. It was further indicated from the reactivity with cyclohexene and the comparison with catalytic performance that W-rich peroxo species were catalytically more active than Mo-rich peroxo species for the oxidation of cyclohexene in this reaction system.

  • Facile formation and dissociation behaviour of C-C bond resulted from the nucleophilic attack of carbanions on a carbonyl carbon in [Pt(hfac)(2)]

    S Okeya, M Hashimoto, F Nakamura, Y Kusuyama, M Kobayashi, R Arakawa

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 10 ) 1130 - 1131   2000.10  [Refereed]

     View Summary

    [Pt(hfac)(2)] (hfac: hexafluoroacetylacetonate) reacts with MeNH2 in CH2Cl2/MeOH to give an -NHMe adduct complex on one of the carbonyl carbons, (MeNH3) [Pt(hfac)(hfac-NHMe)] 1 which is a tetrahedral intermediate of a Schiff base complex, [Pt(CF3COCHC(NMe)CF3)(2)] 2. Complex 1 activates H2O, MeOH, MeNO2 or acetone in solution to form the corresponding conjugate base adducts. The C-C bond in -CH2NO2 adduct 6, easily cleaves and generates nitromethane in solution.

  • Reactivity of organometallic molybdate toward lanthanide cations. Synthesis and structure of polynuclear lanthanide-molybdate complexes

    M Hashimoto, M Takata, A Yagasaki

    INORGANIC CHEMISTRY ( AMER CHEMICAL SOC )  39 ( 16 ) 3712 - +   2000.08  [Refereed]

     View Summary

    Novel polynuclear rare earth compounds [La-3(OH2)(7)-(Cp*MoO3)(2)(NO3)(7)] and [La-3(OH2)(5)(THF)(Cp*MoO3)(2)-(NO3)(6)](2)(NO3)(2) were synthesized by reacting [(n-C4H9)(4)N][CP*MoO3] With La(NO3)(3). 6H(2)O in THF. X-ray crystal structural analyses revealed that both these compounds are composed of a La3Mo2O6 unit in which the metal atoms arrange themselves into a trigonal bipyramid. The Ce analogues were also obtained.
    [GRAPHICS]

    DOI

  • [NH<sub>4</sub>]<sub>3</sub>[VO<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>(OH<sub>2</sub>)<sub>2</sub>].1.5H<sub>2</sub>O

    Masato Hashimoto, Michiru Kubata, Atsushi Yagasaki

    Acta Crystallogr., Sect. C   C56   1411 - 1412   2000  [Refereed]

  • Multicomponent polyanions. 52. Crystal structure of hexacaesium monohydrogen decamolybdo(VI)divanado(IV)phosphate(7-) dihydrate

    M Hashimoto, A Selling, M Hakansson, L Pettersson

    ACTA CHEMICA SCANDINAVICA ( MUNKSGAARD INT PUBL LTD )  53 ( 5 ) 305 - 313   1999.05  [Refereed]

     View Summary

    The structure of the title compound, (Cs6HPMo10V2O40)-V-VI-O-IV. 2H(2)O has been determined by a single-crystal X-ray diffraction method. The compound crystallises in two different space groups. Crystal A: monoclinic P2(1), a = 10.988(3), b = 10.615(3), c = 17.472(2) Angstrom, beta = 91.55(1)degrees, V = 2037(7) Angstrom(3) and Z = 2. Crystal B: monoclinic, Pn, a = 10.982(2), b = 10.614(3), c = 17.487(3) Angstrom, beta = 91.64(1)degrees, V = 2037(7) Angstrom(3) and Z = 2. The R-values based on F were 0.0487 for A and 0.0485 for B for 4491 (A) and 4464 (B) reflections with F-o &gt; 4.0 sigma (F-o) and 353 parameters, and S = 1.048 (A) and 1.026 (B). The polyanion has a so-called alpha-Keggin structure in each crystal. The two vanadium atoms are delocalised in the 12 addenda atom positions in the anion.

  • Formation and conversion of molybdophosphate and -arsenate complexes in aqueous solution

    S Himeno, M Hashimoto, T Ueda

    INORGANICA CHIMICA ACTA ( ELSEVIER SCIENCE SA )  284 ( 2 ) 237 - 245   1999.01  [Refereed]

     View Summary

    The difference between the formation and conversion processes of molybdophosphate and -arsenate complexes was elucidated in a 100 mM Mo(VI)-0.5 M HCl system as a function of the P(V) or As(V) concentration. In the Mo(VI)-P(V) system, the Keggin-type [PMo12O40](3-) complex was stable only at P(V) concentrations &lt;7 mM; further addition of P(V) caused the [PMo12O40](3-) complex to decompose mainly into the A-[PMo9O34H6](3-) complex at an ambient temperature. The latter was subsequently converted into the Dawson-type [P2Mo18O62](6-) complex at an elevated temperature; the Dawson complex was kinetically stable even in the presence of excess of P(V). At As(V) concentrations &lt;10 mM, in contrast, the corresponding Mo(VI)-As(V) system did not produce the Keggin-type [AsMo12O40](3-) complex but the previously unknown complex (tentatively formulated as [AsMo10O37H5](4-)) at an ambient temperature; with further addition of As(V), the [AsMo10O37H5](4-) complex was transformed directly into the [As2Mo6O26H2](4-) complex. The Dawson-type [As2Mo18O62](6-) complex, which was formed upon heating the system at 80 degrees C for 5 h, also underwent subsequent transformation into the [As2Mo6O26H2](4-) complex at As(V) concentrations &gt;20 mM. (C) 1999 Elsevier Science S.A. All rights reserved.

  • Multicomponent polyanions. 53. Structure of tetrakis(trimethylammonium) tetra-mu-oxo-bis(triaquahexadecaoxo(trioxophenylphosphato)hexamolybdate) dihydrate, [NH(CH3)(3)](4)[{(C6H5P)Mo6O21(H2O)(3)}(2)].2H(2)O

    DG Lyxell, D Bostrom, M Hashimoto, L Pettersson

    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE ( MUNKSGAARD INT PUBL LTD )  54   424 - 430   1998.08  [Refereed]

     View Summary

    The title compound crystallized in the monoclinic space group P2(1)/n (No. 14) [a = 11.211 (5), b = 12.862 (3), c = 23.05 (1) Angstrom, beta = 94.37 (3)degrees, V = 3314 (2) Angstrom(3), Z = 2]. The polyanion can be regarded as a dimer of a phenylphosphonatohexamolybdate, (C6H5P)Mo6O23(H2O)(3), Linked by four O atoms. In this monomeric unit the six molybdenum octahedra are grouped into two parts consisting of four and two edge-sharing octahedra, respectively. These two parts are connected by two corner-sharing O atoms to form a bent Mo-6 ring. The phenylphosphonate group coordinates to the Mo-6 ring from the narrow side as a tripodal Ligand. The {(C6H5P)Mo6O21 (H2O)(3)}(2) units form layers parallel to (001) and the structure is stabilized by hydrogen bonds between water and neighboring anions. The monomeric unit has been shown to be a key structure in the process of deducing the aqueous solution structures of the (C6H5P)Mo-6(2-) and (C6H5P)Mo-7(4-) species found in a previous equilibrium study of the H+-MoO42-(C6H5P)O-3(2-) system.

  • Voltammetric determination of vanadium(V) and vanadium(IV) through the formation of a 12-molybdovanadate(V) complex

    S Himeno, K Kusuyama, M Hashimoto, N Ishio

    ANALYTICAL SCIENCES ( JAPAN SOC ANALYTICAL CHEM )  14 ( 4 ) 681 - 685   1998.08  [Refereed]

     View Summary

    A simple voltammetric method has been developed for the determination of V(V) and V(IV). When a mixture of V(V) and V(IV) is added last of all to a 50 mM Mo(VI)-0.3 M HCl-70%(v/v) CH3CN system, only V(V) reacts with Mo(VI) to form a 12-molybdovanadate(V) complex which undergoes a two-step reduction at the glassy carbon (GC) electrode; the reduction current is directly proportional to the V(V) concentration in the mixture. On the other hand, when HCl is added last after heating the Mo(VI)-CH3CN system containing a mixture of V(V) and V(IV) at 60 degrees C for 10 min, V(IV) is completely oxidized to V(V), and the total concentration of vanadium is determined. The V(IV) concentration is determined by subtracting the V(V) concentration before oxidation from the total concentration of vanadium. Interferences from foreign ions are also discussed.

  • Syntheses, structures and solution dynamics of anionic 5-coordinate Pt(II) complexes with halide

    S Okeya, M Hashimoto, T Matsuo, K Yamanaka, T Sumino, H Hashimoto, N Kanehisa, Y Kai

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 6 ) 541 - 542   1998.06  [Refereed]

     View Summary

    Five-coordinate anionic complexes, [Pt(hfac)(2)X](-) (X = Cl, Pr, I), were prepared by reaction of [Pt(hfac)(2)] and [PPh4]X in CH2Cl2. A distorted square pyramidal structure was revealed by the X-ray analysis. The variable-temperature H-1 and F-19 NMR spectra of these complexes were explained by two independent dynamic motions in solution, which were considered good models for the ligand exchange and cis-trans isomerization reactions.

  • Multicomponent polyanions. 54. Crystal structure of tetracaesium monohydrogen phosphato(phosphito)pentamolybdate dihydrate, Cs-4[H(HP)PMo5O22]center dot 2H(2)O

    DG Lyxell, D Bostrom, M Hashimoto, L Pettersson

    ACTA CHEMICA SCANDINAVICA ( MUNKSGAARD INT PUBL LTD )  52 ( 4 ) 425 - 430   1998.04  [Refereed]

     View Summary

    The crystal structure of tetracaesium monohydrogen phosphato (phosphito)pentamolybdate dihydrate was determined by single-crystal X-ray diffraction. The compound crystallises in the triclinic space group P (1) over bar, a=10.284(2), b= 10.791(2) and c=13.047(3) Angstrom, alpha=109.34(2), beta=99.92(2) and gamma=102.85(2)degrees, V=1283.4(5) Angstrom(3) and Z=2. The final R-values are R=0.066, wR=0.039 and S=1.3667. The H(HP)PMo5O224- anion has common features with the Strandberg X2M5-type heteropolyanion. The five MoO6 octahedra form a five-membered ring by one corner-sharing and four edge-sharing connections, and the tripodal phosphate and phosphite ligands protrude from each side of this ring in opposite directions. This is the first example of the structure of the heteropolyoxometalate having both P-III and P-V as heteroatoms.

  • 均一沈殿法による12-タングストリン酸アンモニウム酸性塩触媒の調製とその構造

    犬丸 啓, 中島 仁, 橋本 正人, 御園生 誠

    日本化学会誌     390 - 397   1998  [Refereed]

  • Heteropoly compounds .30. Alkane oxidation with mixed addenda heteropoly catalysts containing Ru(III) and Rh(III)

    Y Matsumoto, M Asami, M Hashimoto, M Misono

    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL ( ELSEVIER SCIENCE BV )  114 ( 1-3 ) 161 - 168   1996.12  [Refereed]

     View Summary

    Oxidation of alkanes, mainly of cyclohexane, with t-butyl hydroperoxide (TBHP) catalyzed by alkylammonium salts of mixed addenda heteropoly compounds having Keggin-type polyanions were studied in benzene solutions, with regard to the relative catalytic activity, reaction orders and the stability of catalysts. Tetra-n-hexylammonium salts of SiRu(H2O)W11O395- and SiRh(H2O)W11O395- showed higher catalytic activities than the corresponding Fe- and Go-substituted catalysts for the selective oxidation of cyclohexane to cyclohexanol and cyclohexanone. Although the Ru catalyst was possibly a mixture, it consisted mainly of SiRu(H2O)W11O395- and gave reproducible catalytic performance for repeated preparations. The initial rates were approximately proportional to the concentrations of cyclohexane, TBHP and the catalyst. Although the rate decreased with the consumption of TBHP, the initial rate was resumed by the addition of TBHP, indicating the absence of the deterioration of catalytic activity. Similarly alcohols and ketones were selectively formed from n-decane and ethylbenzene.

    DOI

  • Multicomponent polyanions .48. The crystal structure of trihydrogen dodecamolybdophosphate-benzene(1/3)

    DG Lyxell, D Bostrom, M Hashimoto, L Pettersson

    ACTA CHEMICA SCANDINAVICA ( MUNKSGAARD INT PUBL LTD )  50 ( 11 ) 985 - 990   1996.11  [Refereed]

     View Summary

    A novel organic solvated heteropoly compound, H3Mo12PO40. 3(C6H6), crystallised in the monoclinic form, P2(1)/n (No. 14), with a = 12.189(2), b = 13.981(2), c = 12.978(1) Angstrom and beta = 98.59(1)degrees. The refinement of 340 parameters with 3705 reflections [I &gt; 3.0 sigma(I)] gave a final R-value of 0.061 (R(w) = 0.067). The polyanion, having a so-called alpha-Keggin structure, is disordered around an inversion centre. One of three benzene molecules is sandwiched between polyanions, and the other two are accommodated in a cavity surrounded by polyanions. The links between polyanions and benzene rings are mainly due to hydrogen bonds. The phosphate and benzene in the compound were formed by hydrolysis of phenylphosphonate. (C) Acta Chemica Scandinavica 1996.

  • Preparation and structure of tetramethylammonium hydrogen triperoxotrimolybdodisulfate trihydrate, [N(CH3)4]3[H(SO4) 2-(MoO2(O2))3]·3H 2O

    Masato Hashimoto, Hikaru Ichida, Yukiyoshi Sasaki

    Journal of Coordination Chemistry ( Taylor and Francis Ltd. )  37 ( 1-4 ) 349 - 359   1996  [Refereed]

     View Summary

    A novel peroxopolyoxomolybdate compound, [N(CH3)4]3 [H(SO4)2 (MoO2(O2))3]·3H2O, has been obtained from a strongly acidic aqueous solution of a molybdate-sulfate system as the monoclinic crystal of P21/n, a = 13.497(3), b = 15.231 (4), c = 32.603(2) Å, β= 103.113(9)°, and V = 6577(2) Å3. The final R-value was 0.0986 for 395 parameters using 7162 reflections. Each of the two crystallographically independent polyanions contains three molybdenum atoms with five O2-, one O2 2-, and two sulfate groups, one of which is a tripod ligand apical to the molybdenum plane, and the other is a bipod ligand equatorial to the Mo plane. © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA.

    DOI

  • SYNTHESIS AND CHARACTERIZATION OF A BIDENTATE CHELATING DIISONITRILE LIGAND WITH 2 THIOETHEREAL SULFURS IN A BRIDGING GROUP AND ITS COPPER(I), RHODIUM(I) AND PALLADIUM(II) COMPLEXES

    K SAKATA, K MATSUMOTO, M HASHIMOTO

    INORGANICA CHIMICA ACTA ( ELSEVIER SCIENCE SA LAUSANNE )  227 ( 1 ) 113 - 118   1994.12  [Refereed]

     View Summary

    The diisonitrile ligand (L) has been synthesized in five reaction steps from t-butylbenzene with an overall yield of 7.3%. The reaction of palladium(II) chloride with L leads to the palladium(II) complex, PdLCl(2), whereas the rhodium(I) complexes, RhL(2)Cl and RhL(2)BF(4), and the copper(I) complex, CuL(2)BF(4), are prepared by ligand exchange reactions. These complexes were investigated by means of mass, infrared, nuclear magnetic resonance (NMR) and electronic spectra, as well as molar conductances. Judging from the molar conductances of the RhL(2)Cl, RhL(2)BF(4), and CuL(2)BF(4), complexes, tetrafluoroborate and chloride anions are ionized in acetonitrile. This is also supported by mass spectral data. The strong band at 2100 cm(-1) is assigned to the N drop C stretching mode. This band shifts to higher frequency upon metal coordination because of the inductive effect produced by the positive charge of the metal ions. This shift increases with increasing charge on the complex. The methy]ene proton signals of the benzy] group and the bridging group in the ligand are shifted slightly downfield on formation of the complexes. Since the magnitude of the shift is approximately proportional to the oxidation number in the metal complexes, the oxidation number could be distinguished by proton NMR studies of the methy]ene groups. These results indicate that the N drop C group in the ligand serves as a sigma-donor and the thioethereal sulfur in the bridging group is not coordinated to the metal atoms. It is surprising that L does not coordinate through the sulfur atoms rather than the isonitriles, because the S-coordinated form would have a stable five-membered-ring structure and the isonitrile coordination gives a fifteen-membered-ring structure.

  • CD(2,2'-BIPYRIDINE-N,N')NI(CN)4, A HIGHLY BENT CLOSE 2-DIMENSIONAL NETWORK OF [CD-((NC)NI1/4)4]N

    M HASHIMOTO, T IWAMOTO

    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS ( MUNKSGAARD INT PUBL LTD )  50   496 - 498   1994.04  [Refereed]

     View Summary

    The crystal structure of poly[(2,2'-bipyridine-N,N')cadmium(II) tetra-mu-cyanonickelate(II)], [Cd(CoH8N2)][Ni(CN)4], has been determined. The tetracyanonickelate(II) ion, Ni(CN)42-, bridges four Cd+ ions to form an infinite two-dimensional folded network stacking along the b axis. The 2,2'-bipyridine ligands chelate to the Cd atoms alternately above and below the folded network. The distortion about the octahedrally coordinated Cd atom is so large, as a result of the unusual coordination behaviour of the Ni(CN)4 in the network formation, that one of the Cd-N-C angles is markedly bent [143.1 (3)-degrees].

  • ACID STRENGTH OF HETEROPOLYACIDS AND ITS CORRELATION WITH CATALYTIC ACTIVITY

    T OKUHARA, CW HU, M HASHIMOTO, M MISONO

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  67 ( 4 ) 1186 - 1188   1994.04  [Refereed]

     View Summary

    UV spectrophotometry of a Hammett indicator revealed that the acid strength of the Keggin-type heteropolyacids having W as addenda atoms increased as the valency of the central atom increased (Co &lt; B &lt; Si, Ge &lt; P). The catalytic activity for the decomposition of isobutyl propionate in a homogeneous system was correlated well with the acid strength.

  • [(C5H5N)2H]3[PW12O40]

    M HASHIMOTO, M MISONO

    ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS ( MUNKSGAARD INT PUBL LTD )  50   231 - 233   1994.02  [Refereed]

     View Summary

    The crystal structure of tris(dipyridinium) dodecatung-stophosphate has been determined. The [PW12O40]3- heteropolyanion, having T(d) symmetry, is disordered by the 3 symmetry. The pyridine molecules are paired around H+ forming (C5H5N)-H+-(NC5H5) cations with their molecular planes almost parallel to the ab plane of the crystal.

    DOI

  • SELECTIVE OXIDATION OF CYCLOPENTENE AND CYCLOHEXENE BY HYDROGEN-PEROXIDE CATALYZED BY HETEROPOLYACIDS

    KY LEE, K ITOH, M HASHIMOTO, N MIZUNO, M MISONO

    NEW DEVELOPMENTS IN SELECTIVE OXIDATION II ( ELSEVIER SCIENCE PUBL B V )  82   583 - 591   1994  [Refereed]

     View Summary

    Oxidation of cycloolefins by hydrogen peroxide catalyzed by various Keggin-type heteropolyacids, H3PMo12-xWxO40, x=0-12, were studied in homogeneous tri-n-butyl phosphate solution, placing stress on the effects of the constituent elements of heteropoly anion. Remarkable synergistic effect of mixed addenda atoms, Mo and W, was observed and high yields of dialdehyde were obtained. A reaction scheme was proposed based on the time course and stoichiometry of reaction, and the reactivity of products.

  • CRYSTAL-STRUCTURE OF TETRACAESIUMDIHYDROGENDECAVANADATE TRIHYDRATE, CS4H2V10O28-CENTER-DOT-3H2O - A LAYERED CRYSTAL-STRUCTURE OF DECAVANADATE

    M HASHIMOTO, M MISONO, M HIBINO, J OI, T KUDO

    POLYHEDRON ( PERGAMON-ELSEVIER SCIENCE LTD )  12 ( 22 ) 2745 - 2747   1993.11  [Refereed]

     View Summary

    The title compound Cs4H2V10O28.3H2O was obtained from a polyvanadate system containing H2O2. No peroxo group or hydrogen peroxide molecule was found in the structure. The polyanions are ordered parallel to the bc-plane forming a layered structure. The water molecules and the caesium ions make a hydrogen bonding network with decavanadate ions and each other to support the whole crystal structure.

  • CATALYSIS BY HETEROPOLY COMPOUNDS .22. REACTIONS OF ESTERS AND ESTERIFICATION CATALYZED BY HETEROPOLYACIDS IN A HOMOGENEOUS LIQUID-PHASE EFFECTS OF THE CENTRAL ATOM OF HETEROPOLYANIONS HAVING TUNGSTEN AS THE ADDENDA ATOM

    CW HU, M HASHIMOTO, T OKUHARA, M MISONO

    JOURNAL OF CATALYSIS ( ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS )  143 ( 2 ) 437 - 448   1993.10  [Refereed]

  • Second Harmonic Generation in Inorganic-Organic Complexes. 1. Control of Bulk Dipolar Alignment of p-Nitroaniline Crystal upon Complexing with Hydrobromic Acid

    Takeshi Gotoh, Noritaka Mizuno, Masakazu Iwamoto, Satoshi Hashimoto, Masahiro Kawasaki, Masato Hashimoto, Makoto Misono

    Chemistry of Materials   4 ( 3 ) 502 - 504   1992.02  [Refereed]

    DOI

  • THE TWISTED SKELETON OF 1,9-DIAMINONONANE IN CATENA-[CATENA-MU-(1,9-DIAMINONONANE)CADMIUM(II) TETRA-MU-CYANONICKELATE(II)]-O-XYLENE(2/1)A

    M HASHIMOTO, T KITAZAWA, T HASEGAWA, T IWAMOTO

    JOURNAL OF INCLUSION PHENOMENA AND MOLECULAR RECOGNITION IN CHEMISTRY ( KLUWER ACADEMIC PUBL )  11 ( 2 ) 153 - 158   1991.09  [Refereed]

     View Summary

    The Hofmann-danon-type o-xylene clathrate Cd[NH2(CH2)9NH2]Ni(CN)4.0.5(CH3)2C6H4, crystallizes in the triclinic space group P1BAR with a = 15.118(3), b = 14.048(4), c = 7.325(1) angstrom, alpha = 91.50(2), beta = 131.66(3), and gamma = 107.50(2)-degrees, V = 1051(1) angstrom 3 and Z = 2. The structure, refined to R = 0.047 using 2851 reflections, reveals a three-dimensional host framework built of the layers of a two-dimensional catena-[cadmium tetra-mu-cyanonickelate(II)] network and of the ambidentate 1,9-diaminononane (danon) bridging the Cd atoms in adjacent networks. The guest o-xylene molecule is accommodated in the cavity formed in the interlayer space similar to that in the Hofmann-daotn-type. The skeleton of the danon in the Cd-NC9N-Cd linkage takes a (gauche)2(trans)8 conformation twisted at the (gauche)2 part in contrast with the all-trans conformation of 1,8-diaminooctane in the Hofmann-daotn-type clathrate. The twisted (gauche)2 part of the danon skeleton occupies the interlayer space to such an extent that void space available for the guest o-xylene molecule decreases to half that in the Hofmann-daotn-type clathrate Cd[NH2(CH2)8NH2]Ni(CN)4.G.

    DOI

  • Preparation and X-ray crystal structure of [N(CH3)4]4[{H(SO4)W3O7(O2)2}2O]

    Masato Hashimoto, Toschitake Iwamoto, Hikaru Ichida, Yukiyoshi Sasaki

    Polyhedron   10 ( 6 ) 649 - 651   1991  [Refereed]

     View Summary

    The title peroxotungstosulphate as the first example of a polytungstosulphate has been prepared and its structure determined. The salt crystallizes under the conditions: [WO42-] = 0.3-1.0 mol dm-3, [WO42-]/[SO42-] = 1-1/4, [WO42-]/[H2O2] = 1/2-1/4 and pH &lt
    1. The SO42- tetrahedron shares its three vertices with two WO5(O2)2 decahedra and one WO6 octahedron to form a diperoxotritungstosulphate moiety
    the polyanion is made of the two moieties bridged with three gm-oxo groups. © 1991.

    DOI

  • CRYSTAL-STRUCTURES OF (18-CROWN-6)-(2-HYDROXYETHYLAMMONIUM) TETRACYANONICKELATE(II) AND 10-AMINODECYLAMMONIUM TETRACYANONICKELTATE(II)

    M HASHIMOTO, T IWAMOTO

    JOURNAL OF COORDINATION CHEMISTRY ( GORDON BREACH SCI PUBL LTD )  23 ( 1-4 ) 269 - 276   1991  [Refereed]

  • CATENA-MU-(1,9-DIAMINONONANE)CADMIUM(II) ARRAY IN THE CRYSTAL-STRUCTURE OF CATENA-[BIS-CATENA-MU-(1,9-DIAMINONONANE)CADMIUM(II) CIS-DI-MU-CYANO-DICYANONICKELATE(II)]-(2,4-XYLIDINE) (1/2) DIFFERENT FROM THAT IN THE 2,3-ISOMER ANALOG

    M HASHIMOTO, T IWAMOTO

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 9 ) 1531 - 1534   1990.09  [Refereed]

    DOI

  • NOVEL 3-DIMENSIONAL METAL-COMPLEX HOST STRUCTURES OF CATENA-[PROPYLENEDIAMINECADMIUM(II) TETRA-MU-CYANONICKELATE(II)] AND CATENA-[PROPYLENEDIAMINECADMIUM(II) TETRA-MU-CYANOCADMATE(II)]

    KM PARK, M HASHIMOTO, T KITAZAWA, T IWAMOTO

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 9 ) 1701 - 1704   1990.09  [Refereed]

  • IR, RAMAN AND C-13 NMR-SPECTRA OF PEROXOTUNGSTOOXALATE

    M HASHIMOTO, T IWAMOTO, H ICHIDA, Y SASAKI, T KUDO

    INORGANICA CHIMICA ACTA ( ELSEVIER SCIENCE SA LAUSANNE )  166 ( 1 ) 17 - 20   1989.12  [Refereed]

    DOI

  • CRYSTAL-STRUCTURE OF CATENA-[CATENA-BIS-MU-(1,9-DIAMINONONANE)CADMIUM CIS-DI-MU-CYANO-DICYANONICKELATE(II)]-(2,3-XYLIDINE)(1/2)

    M HASHIMOTO, T HASEGAWA, H ICHIDA, T IWAMOTO

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 8 ) 1387 - 1390   1989.08  [Refereed]

  • OXALATO COMPLEXES DIRECTLY FORMED BY THE REACTION OF INTERSTITIAL CARBIDES WITH HYDROGEN-PEROXIDE

    T KUDO, Y SASAKI, M HASHIMOTO, K MATSUMOTO

    INORGANICA CHIMICA ACTA ( ELSEVIER SCIENCE SA LAUSANNE )  145 ( 2 ) 205 - 209   1988.05  [Refereed]

    DOI

  • FORMATION OF PEROXO OXALATO COMPLEX OF TUNGSTEN(VI) DIRECTLY FROM TUNGSTEN CARBIDE AND HYDROGEN-PEROXIDE - A NEW PATH TO THE TOTAL SYNTHESIS OF THE ORGANIC-COMPOUND

    T KUDO, Y SASAKI, M HASHIMOTO, H ICHIDA, K MATSUMOTO

    INORGANICA CHIMICA ACTA ( ELSEVIER SCIENCE SA LAUSANNE )  133 ( 2 ) 201 - 203   1987.10  [Refereed]

  • CRYSTAL-STRUCTURE OF TETRABUTYLAMMONIUM MU-OXALATOBIS(OXODIPEROXOTUNGSTATE) (2-), [(N-C4H9)4N]2[WO(O2)2(C2O4)WO(O2)2]

    M HASHIMOTO, T OZEKI, H ICHIDA, Y SASAKI, K MATSUMOTO, T KUDO

    CHEMISTRY LETTERS ( CHEMICAL SOC JAPAN )  ( 9 ) 1873 - 1876   1987  [Refereed]

▼display all

Misc

  • INOR 711-Characterization and 31P NMR study of [X2{PW3O9.5(O2)3(OH)0.5(OH2)}4]8-(X=K+, Rb+, NH4+)

    Shinya Kitaura, Kiyotaka Kihara, Masato Hashimoto, Seichi Okeya

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  234   2007.08

  • INOR 906-Speciation study of phosphorus-containing Strandberg type heteropolymolybdate anions

    Masato Hashimoto, Ingegaerd Andersson, Lage Pettersson

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  234   2007.08

  • INOR 693-Novel peroxodiphosphatomolybdate -structural and 31P NMR study-

    Koji Aoki, Keisuke Iwata, Masato Hashimoto, Seichi Okeya

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  234   2007.08

  • INOR 704-31P NMR study of peroxophosphatotunstates in aqueous/acetonitrile mixed media

    Yusuke Hamamatsu, Shinya Kitaura, Kiyotaka Kihara, Takahiro Terada, Masato Hashimoto, Seichi Okeya

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  234   2007.08

  • INOR 696-Characterization and 31P NMR study of [PMo10O35(O2)]7-with various counter cations

    Keisuke Iwata, Koji Yamanaka, Koji Aoki, Masato Hashimoto, Seichi Okeya

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  234   2007.08

  • Future Opportunities in Organic Synthesis by Heteropoly Acid Catalysts

    MISONO M.

    Shokubai ( 触媒学会 )  34 ( 3 ) p152 - 158   1992.04

▼display all

Works

  • 環境調和型選択酸化触媒のナノ構造制御

    2003

Conference Activities & Talks

  • 三リン酸を含むペルオキソポリオキソタングステートの合成

    中村悠人, 橋本正人

    錯体化学会第73回討論会  2023.09.22  

  • 2種のペルオキソヘキサタングステートの合成法の最適化

    池端祐人, 橋本正人

    錯体化学会第73回討論会  2023.09.22  

  • Pをヘテロ原子とする環状ペルオキソタングステートの結晶の質の改善とキャラクタリゼーション

    大西正剛, 橋本正人

    錯体化学会第73回討論会  2023.09.22  

  • 二リン酸をヘテロ原子団とする希土類含有ペルオキソポリオキソモリブデートの合成と構造解析

    藏富勇人, 橋本正人

    錯体化学会第73回討論会  2023.09.22  

  • Synthesis of W11 peroxopolytungstate containing diphosphates and rare earth elements and its porous crystal structure

    Yuu Yamazaki, Masato Hashimoto

    錯体化学会第73回討論会  2023.09.21  

  • 有機配位子により架橋されたRE2W4型希土類含有ペルオキソタングステート誘導体の合成と構造

    安上昂輝, 佐々木祐二, 橋本正人

    錯体化学会第73回討論会  2023.09.21  

  • 環状三リン酸をヘテロ原子団とするペルオキソモリブデートの合成と錯形成時の溶液内での挙動

    水野雄樹, 橋本正人

    錯体化学会第73回討論会  2023.09.21  

  • 二リン酸と希土類によって集積化した W25 核ペルオキソポリタングステートの合成と構造

    山崎優, 橋本正人

    第39回希土類討論会  2023.05.31  

  • 二リン酸をヘテロ原子団とするペルオキソタングステートの合成と構造および溶液内挙動の追跡

    植田悠斗, 橋本正人

    錯体化学会第72回討論会  2022.09.27  

  • カルボキレートを配位させたぺルオキソポリオキソタングステートの合成と構造解析

    奥田裕一, 橋本正人

    錯体化学会第72回討論会  2022.09.27  

  • 希土類イオンと二リン酸によって構造が支持されたW11核ペルオキソヘテロポリタングステートの合成と構造

    山﨑優, 橋本正人

    錯体化学会第72回討論会  2022.09.27  

  • ギ酸基で架橋された無限鎖型希土類含有ペルオキソタングステートの合成と構造

    安上昂輝, 橋本正人

    錯体化学会第72回討論会  2022.09.27  

  • 八核ペルオキソジフォスファトモリブデート の合成方法の最適化と錯形成反応

    藏富勇人, 橋本正人

    錯体化学会第72回討論会  2022.09.26  

  • トリメタリン酸をヘテロ原子団とするペルオキソモリブデートの反応溶液内での錯形成挙動

    水野雄樹, 橋本正人

    錯体化学会第72回討論会  2022.09.26  

  • RE2W4型希⼟類含有ペルオキソタングステート誘導体の合成と構造

    安上 昂輝, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • SiおよびTeをヘテロ原⼦とするペルオキソモリブデートの合成

    古川 裕太, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • ⼆リン酸をヘテロ原⼦団とした、希⼟類含有環状ペルオキソポリタングステートの合成と結晶構造

    山﨑 優, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • 新規ぺルオキソ・オキソ⼆重架橋ぺルオキソメタレートダイマーの合成・構造解析および溶液内 挙動の追跡

    奥田 裕一, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • ⼆リン酸をヘテロ原⼦団とする⼆核ペルオキソタングステートの合成と構造および溶液内挙動の 追跡

    植田 悠斗, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • Ishii-Venturello型ペルオキソヘテロタングステートの合成検討と触媒反応過程の追跡

    平谷 直也, 橋本 正人

    錯体化学会第71回討論会  2021.09.16  

  • プロピオン酸基を配位子としたペルオキソタングステートの合成と構造解析

    奥田裕一, 橋本正人

    錯体化学会第70回討論会  2020.09.30  

  • ペルオキソジホスファトタングステートの合成と溶液内挙動の追跡

    植田悠斗, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 硫酸基を配位子として含むペルオキソモリブデートの合成と構造

    古川裕太, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 希土類(III)イオンを含むペルオキソイソモリブデートの合成、構造解析と発光特性およびタングステン類似体との比較

    大川裕太, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 31P, 51V NMRを用いた高濃度多リン酸ペルオキソバナデート系の錯形成挙動の調査と形成錯体の単離

    櫃本雄一朗, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 2種類のサンドイッチ型ペルオキソホスファトタングステートの合成と錯体形成の相互関係

    祝田佑介, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 希土類元素を含み、二リン酸をヘテロ原子団とするペルオキソヘテロポリタングステートの合成

    山﨑優, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 触媒反応過程の追跡を目的としたIshii-Venturello型ペルオキソヘテロタングステートの合成検討と溶液内挙動

    平谷直也, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 二リン酸をヘテロ原子団とするペルオキソモリブデートの合成と溶液内挙動の追跡

    浅野翔, 橋本正人

    錯体化学会第70回討論会  2020.09.29  

  • 硫酸を配位子として含むペルオキソモリブデートの新規合成法と構造

    古川裕太, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • 希土類元素を含むペルオキソイソタングステートの合成と構造、及び89Y, 183W NMR

    山本雄介, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • 未帰属シグナルを持つ多リン酸ペルオキソバナデート系の31P, 51V NMRを用いた溶液内挙動の調査

    櫃本雄一朗, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • サンドイッチ型ペルオキソホスファトタングステートの合成と31P NMRによる溶液内挙動の追跡

    祝田佑介, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • 希土類イオンを組み込んだペルオキソイソモリブデートの発行特性および類似構造を持つタングステートとの比較

    大川裕太, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • 二リン酸をヘテロ原子団とするペルオキソモリブデートの合成と溶液内挙動の追跡

    浅野翔, 橋本正人

    第69回錯体化学討論会  2019.09.23  

  • Triphosphatotriperoxodivanadate that survives in wide acidic conditions

    Nagito Hirano, Masato Hashimoto

    11th International Vanadium Symposium  2018.11.07  

  • Ishii-Venturello type peroxovanadates with oligophosphates

    Yuichiro Hitsumoto, Masato Hashimoto

    11th International Vanadium Symposium  2018.11.06  

  • ペルオキソジホスファトタングステートの合成と溶液内挙動の追跡

    貴志智弥, 橋本正人

    第68回錯体化学討論会  2018.07.29  

  • 直鎖多リン酸をヘテロ原子団とするペルオキソモリブデート

    浅野翔, 橋本正人

    第68回錯体化学討論会  2018.07.29  

  • イリジウムを組み込んだペルオキソホスファト/イソモリブデートの合成と31P NMRによる溶液内挙動の追跡

    山下達也, 橋本正人

    第68回錯体化学討論会  2018.07.29  

  • サンドイッチ型および環状ペルオキソヘテロタングステートの合成と構造

    祝田佑介, 橋本正人

    第68回錯体化学討論会  2018.07.29  

  • 環状・鎖状多リン酸とトリペルオキソジバナデートとの錯形成および形成錯体の単離・構造決定

    平野凪斗, 橋本正人

    第68回錯体化学討論会  2018.07.28  

  • 多リン酸を含むペルオキソバナデートの合成と構造およびアニオン形成反応

    櫃本雄一朗, 橋本正人

    第68回錯体化学討論会  2018.07.28  

  • 希土類(III)イオンを組み込んだペルオキソイソポリタングステートの合成と構造および89Y, 183W NMR

    山本雄介, 橋本正人

    第68回錯体化学討論会  2018.07.28  

  • 希土類元素を組み込んだペルオキソホスホタングステートの合成と構造決定

    田中智史, 橋本正人

    第68回錯体化学討論会  2018.07.28  

  • 希土類イオンを組み込んだペルオキソイソモリブデートの合成と構造

    大川裕太, 橋本正人

    第68回錯体化学討論会  2018.07.28  

  • イリジウムとリンを組み込んだペルオキソタングステートの合成と31P NMRによる溶液内挙動の追跡

    山下達也, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • 多リン酸を含むペルオキソバナデート

    平野凪斗, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • 希土類元素(III)を組み込んだペルオキソイソポリタングステートの合成と構造および溶液内挙動の追跡

    山本雄介, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • 二リン酸をヘテロ原子団とするペルオキソタングステート

    貴志智弥, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • 希土類元素を組み込んだぺるオキソホスホタングステートの合成と構造解析

    田中智史, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • W3ユニット[W3O14-x(O2)x]を含むペルオキソタングステートの形成と構造

    小山直哉, 橋本正人

    第67回錯体化学討論会  2017.09.16  

  • Peroxovanadates and oligophosphates

    Shunsuke Sorihashi, Nagito Hirano, Masato Hashimoto

    10th International Vanadium Symposium  2016.11.07  

  • 希土類(III)イオンを含む捻じれ型ペルオキソイソタングステートの合成と構造

    北村智哉, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • Pt(IV)含有ペルオキソヘテロポリタングステートの合成、構造および31P, 195Pt NMRによる溶液内挙動の検討

    朝日聖晶, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • 'W3ユニット'[W3O14-x(O2)x]をビルディングユニットとするペルオキソタングステートの形成と構造

    小山直哉, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • 直鎖多リン酸を含むペルオキソバナデートの合成と構造

    反橋俊介, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • 直鎖三リン酸―ペルオキソモリブデート系における錯形成反応の31P NMRによる追跡と形成錯体のキャラクタリゼーション

    尾山諒輔, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • イリジウムを組み込んだペルオキソホスファトタングステートの合成と31P NMRによる溶液内挙動の追跡

    山下達也, 橋本正人

    第66回錯体化学討論会  2016.09.11  

  • 水溶液中における環状リン酸を含むペルオキソバナデート系の溶液内挙動

    平野凪斗, 橋本正人

    第66回錯体化学討論会  2016.09.10  

  • 希土類元素を組み込んだペルオキソイソ/ヘテロバナデートの合成

    福井孝則, 橋本正人

    第66回錯体化学討論会  2016.09.10  

  • 直鎖状リン酸をヘテロ原子団とするペルオキソタングステートの合成および31P NMRによる溶液内反応の検討

    貴志智弥, 橋本正人

    第66回錯体化学討論会  2016.09.10  

  • 二リン酸を含むペルオキソヘテロバナデートの合成と構造

    反橋俊介, 橋本正人

    第65回錯体化学討論会  2015.09.22  

  • 希土類元素を組み込んだペルオキソバナデートの合成

    福井孝則, 橋本正人

    第65回錯体化学討論会  2015.09.22  

  • 直鎖三リン酸をヘテロ原子団とするペルオキソモリブデートの合成と31P NMRによる溶液内挙動の追跡

    尾山諒輔, 橋本正人

    第65回錯体化学討論会  2015.09.22  

  • 水溶液系におけるリン酸により架橋されたペルオキソタングステート二量体の合成および31P NMRによる形成反応の検討

    吉田祐基, 橋本正人

    第65回錯体化学討論会  2015.09.21  

  • Pt(IV)を組み込んだペルオキソヘテロポリタングステートの合成とNMRによる溶液内挙動の追跡

    朝日聖晶, 橋本正人

    第65回錯体化学討論会  2015.09.21  

  • Pt(IV)を含むペルオキソタングステートの合成と形成反応の追跡

    岩田貴大, 橋本正人

    第65回錯体化学討論会  2015.09.21  

  • Triphosphatoperoxotungstates - <sup>31</sup>P NMR and Structural Study

    Yusuke Kunigita, Masato Hashimoto

    40th International Conference on Coordination Chemistry  2012.09.12  

  • Structure and Anion Formation of Novel Diphosphatodecaperoxopentatungstate

    Yusuke Kunigita, Masato Hashimoto

    40th International Conference on Coordination Chemistry  2012.09.11  

  • An Overview on Peroxopolyoxometallate

    Masato Hashimoto  [Invited]

    GDCh-Wissenschaftsforum Chemie 2011  2011.09.07  

  • Novel Diphosphatoperoxohexamolybdate

    Kenji Konishi, Yusuke Kunigita, Masato Hashimoto

    GDCh-Wissenschaftsforum Chemie 2011  2011.09.05  

  • Triphosphatoperoxotungstates -<sup>31</sup>P NMR and Structural Study-

    Yusuke Kunigita, Masato Hashimoto

    GDCh-Wissenschaftsforum Chemie 2011  2011.09.05  

  • Polymeric Peroxometalates

    Masato Hashimoto  [Invited]

    PACIFICHEM2010  2010.12.19  

  • Novel Peroxohexatungstate

    Akitsugu Shiga, Masato Hashimoto

    PACIFICHEM2010  2010.12.18  

  • Novel Octaperoxophosphatotetratungstate

    Shin-ya Kitaura, Katsutoshi Kato, Masato Hashimoto

    PACIFICHEM2010  2010.12.18  

  • Diphosphato complexes of vanadates and peroxovanadates

    Masato Hashimoto

    7th International Vanadium Symposium  2010.10.07  

  • Novel peroxodiphosphatotungstates

    Yuto Hirata, Masayuki Hanano, Kiyotaka Kihara, Masato Hashimoto

    International Polyoxometalate Symposium  2009.07.30  

  • A brief introduction of peroxoheteropolytungstates at low peroxide/W ratio

    Masato Hashimoto  [Invited]

    International Polyoxometalate Symposium  2009.07.30  

  • Simple peroxovanadate-amino acid complexes

    Masato Hashimoto, Takeshi Higuchi, Seichi Okeya  [Invited]

    6th International Vanadium Symposium  2008.07.17  

  • Synthesis and characterisation of novel [VO(O<sub>2</sub>)<sub>2</sub>L] (L=ligand) type complexes

    Takeshi Higuchi, Masato Hashimoto, Seichi Okeya

    6th International Vanadium Symposium  2008.07.17  

  • Speciation study of phosphorus-containing Strandberg type heteromolybdate anions

    Masato Hashimoto, Ingegärd Andersson, Lage Petterson  [Invited]

    234th The American Chemical Society National Meeing  2007.08.23  

  • Characterization and <sup>31</sup>P NMR study of [X<sub>2</sub>{PW<sub>3</sub>O<sub>9.5</sub>(O<sub>2</sub>)<sub>3</sub>(OH)<sub>0.5</sub>(OH<sub>2</sub>)}<sub>4</sub>]<sup>8-</sup> (X=K<sup>+</sup>, Rb<sup>+</sup>, NH<sub>4</sub><sup>+</sup>)

    Shin-ya Kitaura, Kiyotaka Kihara, Masato Hashimoto, Seichi Okeya

    234th The American Chemical Society National Meeing  2007.08.21  

  • Novel peroxodiphosphatomolybdate -structural and <sup>31</sup>P NMR study-

    Koji Aoki, Keisuke Iwata, Masato Hashimoto, Seichi Okeya

    234th The American Chemical Society National Meeing  2007.08.21  

  • <sup>31</sup>P NMR study of peroxophosphotungstates in aqueous/acetonitrile mixed media

    Yusuke Hamamatsu, Takahiro Terada, Shin-ya Kitaura, Kiyotaka Kihara, Masato Hashimoto, Seichi Okeya

    234th The American Chemical Society National Meeing  2007.08.21  

  • Characterization and <sup>31</sup>P NMR study of [PMo<sub>10</sub>O<sub>35</sub>(O<sub>2</sub>)]<sup>7-</sup>

    Keisuke Iwata, Koji Yamanaka, Masato Hashimoto, Seichi Okeya

    234th The American Chemical Society National Meeing  2007.08.21  

  • Syntheses, structures and NMR studies of novel peroxopolytungstates coordinated by organic ligands

    PACIFICHEM2005  2005.12.19  

  • Peroxopolyoxometalates as assemblies of building units

    Masato Hashimoto

    PACIFICHEM2005  2005.12.19  

  • Keggin- and Dawson-type tungstosulfuric acids applicable as super strong acid catalysts

    Masayuki Hanano, Hiroki Ozaki, Masato Hashimoto, Seichi Okeya

    PACIFICHEM2005  2005.12.18  

  • Formation, Synthesis and Structure of Peroxoheteropolytungstates obtained from Aqueous-Organic Mixed Media

    Yusuke Hamamatsu, Masato Hashimoto, Seichi Okeya

    11th Asian Chemical Congress  2005.08.25  

  • Recent Progress on Peroxopolyoxometallates

    Masato Hashimoto  [Invited]

    28th International Conference on Solution Chemistry  2002.07.23  

  • Structure of [PMo<sub>10</sub>O<sub>35</sub>(O<sub>2</sub>)]<sub>7-</sub>. A Novel Capped Lacunary Keggin Type Heteropolyanion

    Koji Yamanaka, Masato Hashimoto, Seichi Okeya

    35th International Conference on Coordination Chemistry  2002.07.23  

  • The synthesis and structure of a novel peroxoisopolytungstate [W<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>

    Hiroyuki Suzuki, Masato Hashimoto, Seichi Okeya

    9th Nordic Symposium on Coordination Chemistry  2002.06.15  

  • Structures of novel peroxoisopolymolybdates formed in aqueous-organic medium

    Takashi Tanaka, Masato Hashimoto, Seichi Okeya

    9th Nordic Symposium on Coordination Chemistry  2002.06.15  

  • Perspective Aspects on Peroxopolyoxometallates

    Masato Hashimoto  [Invited]

    9th Nordic Symposium on Coordination Chemistry  2002.06.15  

  • The structures of novel 3D [V<sub>10</sub>O<sub>28</sub>]<sup>6-</sup> transition metal complexes

    Tomoyuki Higami, Masato Hashimoto, Seichi Okeya

    3rd International Symposium on Vanadium Chemistry and Biochemistry  2001.11.28  

  • Peroxomolybdates -Preparation and Structure-

    Tomohiro Minami, Masato Hashimoto, Seichi Okeya

    PACIFICHEM2000  2000.12.17  

▼display all

Research Exchange

  • 錯体化学会第72回討論会

    2022.09
     
  • 和歌山化成品協同組合との講演会

    2022.07
     
  • 和歌山化成品協同組合との講演会

    2021.12
     
  • 和歌山化成品協同組合との交流会

    2021.09
     
  • 錯体化学会第71回討論会

    2021.09
     
  • 錯体化学会討論会

    2020.09
     
  • 錯体化学会討論会

    2019.09
     
  • 11th International Vanadium Symposium

    2018.11
     
  • 錯体化学会討論会

    2018.07
     
  • 錯体化学討論会

    2017.09
     
  • 日本化学会春季年会

    2017.03
     
  • 10th International symposium on vanadium chemistry

    2016.11
     
  • 錯体化学討論会

    2016.09
     
  • 日本化学会春季年会

    2016.03
     
  • 錯体化学討論会

    2015.09
     
  • 日本化学会春季年会

    2015.03
     
  • 錯体化学討論会

    2014.09
     
  • バイオテック2014

    2014.05
     
  • 日本化学会春季年会

    2014.03
     
  • 錯体化学討論会

    2013.11
     
  • 第93回日本化学会春季年会

    2013.03
     
  • 錯体化学会第62回討論会

    2012.09
     
  • 第40回錯体化学国際会議

    2012.09
     
  • 第92回日本化学会春季年会

    2012.03
     
  • Wissenschaftsforum 2011

    2011.09
     
  • 第61回錯体化学討論会

    2011.09
     
  • 環太平洋国際化学会議2010

    2010.12
     
  • 第7回国際バナジウム会議

    2010.10
     
  • 第60回錯体化学討論会

    2010.09
     
  • 日本化学会第90回春季年会

    2010.03
     
  • 第59回錯体化学討論会

    2009.09
     
  • ポリオキソメタレート国際会議

    2009.07
    -
    2009.08
     
  • 日本化学会第89回春季年会

    2009.06
     
  • 第58回錯体化学討論会

    2008.09
     
  • 第6回国際バナジウム会議

    2008.07
     
  • 日本化学会第88回春季年会

    2008.03
     
  • 第57回錯体化学討論会

    2007.09
     
  • 第234回アメリカ化学会年会

    2007.08
     

▼display all

KAKENHI

  • ペルオキソへテロポリタングステートの構造制御-溶媒と陽イオンが担う役割とは?-

    2007.04
    -
    2011.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • ビルディングブロックの集積によるイオン性金属過酸化物ポリマーの分子構築

    2003.04
    -
    2006.03
     

    Grant-in-Aid for Exploratory Research  Principal investigator

  • 平面四角形型錯体の反応モデルとしての五配位錯体

    1999.04
    -
    2002.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

Joint or Subcontracted Research with foundation, company, etc.

  • ナフタレン誘導体の試験研究

    2024.06
    -
    2024.07
     

    Contracted research  Principal investigator

Instructor for open lecture, peer review for academic journal, media appearances, etc.

  • 非常勤講師

    2015.04
    -
    2015.09

    広島大学大学院工学研究院

     View Details

    非常勤講師等

    非常勤講師,任期:2015/04/08~2015/09/30

  • 論文審査

    2013.04
    -
    Now

    Inorganic Chemistry Communications, Journal of Molecular Catalysisなど ( Elsevier)

     View Details

    学術雑誌等の編集委員・査読・審査員等

    論文審査,任期:継続中

  • 南紀熊野サテライト講義

    2010.04

    和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    南紀熊野サテライト講義「みんなの科学入門」を行なった。(7コマ分),日付:2010.11~2010.12

Committee member history in academic associations, government agencies, municipalities, etc.

  • 公益社団法人日本化学会 オリンピック小委員会委員

    2023.03.01
    -
    2024.02.28
     

    日本化学会

     View Details

    化学オリンピック

    代表生徒の選抜及び教育訓練

  • 公益社団法人日本化学会 オリンピック小委員会委員

    2022.03.01
    -
    2023.02.28
     

    日本化学会

     View Details

    化学オリンピック

    代表生徒の選抜及び教育訓練

  • 公益社団法人日本化学会 オリンピック小委員会委員

    2021.03.01
    -
    2022.02.28
     

    日本化学会

     View Details

    化学オリンピック

    代表生徒の選抜及び教育訓練

  • 学協会、政府、自治体等の公的委員

    2020.03
    -
    2021.03
     

    公益社団法人日本化学会 オリンピック小委員会委員

     View Details

    国や地方自治体、他大学・研究機関等での委員

    学協会、政府、自治体等の公的委員,任期:2020年3月~2021年3月

  • 委員

    2020.02
    -
    2021.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • (近畿支部選出)2020年度代議員

    2019.11
    -
    2020.10
     

    公益社団法人日本化学会近畿支部 2020年度公益社団法人日本化学会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    (近畿支部選出)2020年度代議員,任期:2019年11月~2020年10月

  • 委員

    2019.10
    -
    2020.09
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    代議員,任期:1年

  • 委員

    2019.03
    -
    2020.02
     

    公益財団法人日本化学会グランプリ小委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2019年3月~2020年2月

  • 委員

    2019.02
    -
    2020.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • 委員

    2018.02
    -
    2019.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • 委員

    2017.04
    -
    2018.02
     

    平成29年教育・普及部門の委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2017年~2018年2月

  • 委員

    2017.03
    -
    2018.02
     

    平成29年教育・普及部門の委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2017年3月-2018年2月

  • 委員

    2017.02
    -
    2018.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • 委員

    2016.03
    -
    2017.02
     

    オリンピック小委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2016年3月-2017年2月

  • 委員

    2016.02
    -
    2017.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • 委員長

    2015.02
    -
    2016.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会,任期:1年

  • 理事

    2014.06
    -
    2015.06
     

    一般社団法人和歌山県発明協会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    理事,任期:2014/06/03~2015/06/03

  • 委員

    2014.06
    -
    2015.03
     

    和歌山県起業家支援施設等入居審査委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2014/06/20~2015/03/31

  • 委員

    2014.06
    -
    2015.03
     

    公益財団法人わかやま産業振興財団わかやま中小企業元気ファンド事業審査委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2014/06/04~2015/03/31

  • 評議員

    2014.05
    -
    2015.03
     

    公益財団法人わかやま産業振興財団

     View Details

    国や地方自治体、他大学・研究機関等での委員

    評議員,任期:2014/05/08~2015/03/31

  • 委員

    2014.03
    -
    2015.02
     

    公益社団法人日本化学会 化学グランプリ・オリンピック委員会 オリンピック小委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    国や地方自治体、他大学・研究機関等での委員,任期:2014/03/01~2017/02/28

  • 委員

    2014.02
    -
    2016.02
     

    教育・普及部門の委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2015/02/26~2016/02/28

  • 講師

    2013.04
    -
    2014.03
     

    鳥取県

     View Details

    学協会、政府、自治体等の公的委員

    科学を創造する人材育成事業

  • 委員

    2013.03
    -
    2015.02
     

    オリンピック小委員会

     View Details

    国や地方自治体、他大学・研究機関等での委員

    委員,任期:2014/03/01~2015/02/28

  • 委員

    2012.03
    -
    2015.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    化学グランプリ・オリンピック委員会化学オリンピック小委員会

  • 委員

    2009.10
    -
    2010.03
     

    第7回バナジウム国際会議 国内組織委員会

     View Details

    学協会、政府、自治体等の公的委員

    学会開催のための準備等,任期:2009.10~2010.3

  • 化学グランプリ・オリンピック委員会オリンピックワーキンググループ委員

    2009.04
    -
    2010.02
     

    日本化学会

     View Details

    学協会、政府、自治体等の公的委員

    学協会、政府、自治体等の公的委員,任期:2009.4~2010.2

  • 戦略的研究開発プラン外部審査員

    2007.07
    -
    2007.08
     

    和歌山県

     View Details

    国や地方自治体、他大学・研究機関等での委員

    戦略的研究開発プラン外部審査員 ,任期:2007.7~2007.8

  • 和歌山大学委員

    2007.04
    -
    2010.03
     

    化学系研究設備有効活用ネットワーク協議会

     View Details

    学協会、政府、自治体等の公的委員

    共同利用機器の選定、活動方針の決定、予算決算の承認、など,任期:2007.4~2010.3

▼display all