Updated on 2025/01/17

写真a

 
ODA Masato
 
Name of department
Faculty of Systems Engineering, Materials Engineering
Job title
Associate Professor
Concurrent post
Electronics and Applied Physics Major(Associate Professor)
Mail Address
E-mail address
Homepage
External link

Education

  • 2001
    -
    2006

    Chiba University   Graduate School of Science and Technology  

  • 1997
    -
    2001

    Chiba University   Faculty of Science   Department of Physics  

Degree

  • 博士(理学)

Academic & Professional Experience

  • 2023.04
    -
    Now

    Ainogakuin College   非常勤講師

  • 2023.04
    -
    Now

    Wakayama University   Faculty of Systems Engineering   准教授

  • 2019.04
    -
    2019.09

    Nagoya Institute of Technology   非常勤講師

  • 2018.04
    -
    2022.03

    Wakayama University   Faculty of Systems Engineering   講師

  • 2017.04
    -
    Now

    Tokyo Healthcare University   和歌山看護学部   非常勤講師

  • 2012.04
    -
    2016.09

    Ainogakuin College   非常勤講師

  • 2011.04
    -
    2011.09

    Wakayama Medical University   医学部   非常勤講師

  • 2007.04
    -
    2018.03

    Wakayama University   Faculty of Systems Engineering   助教

  • 2006.04
    -
    2007.03

    National Institute for Materials Science   計算科学センター   ポスドク

▼display all

Research Areas

  • Nanotechnology/Materials / Thin-film surfaces and interfaces

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research)

  • 2023   Human Enrichment through the Game of GO   Liberal Arts and Sciences Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Scientific and Technical English B   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Materials Engineering Seninar   Specialized Subjects

  • 2023   Experiments in Materials Engineering C   Specialized Subjects

  • 2023   Experiments of Materials Engineering A   Specialized Subjects

  • 2023   Experiments of Materials Engineering B   Specialized Subjects

  • 2023   Practice in Physics   Specialized Subjects

  • 2023   Statistical Mechanics II   Specialized Subjects

  • 2023   Statistical Mechanics I   Specialized Subjects

  • 2023   Quantum Mechanics IA   Specialized Subjects

  • 2023   Quantum Mechanics IB   Specialized Subjects

  • 2023   Basic Physics   Specialized Subjects

  • 2022   Fundamentals of Robotics   Liberal Arts and Sciences Subjects

  • 2022   Cosmology at the Microscopic Scale   Liberal Arts and Sciences Subjects

  • 2022   Human Enrichment through the Game of GO   Liberal Arts and Sciences Subjects

  • 2022   Quantum Mechanics IB   Specialized Subjects

  • 2022   Quantum Mechanics IA   Specialized Subjects

  • 2022   Practice in Physics   Specialized Subjects

  • 2022   Statistical Mechanics II   Specialized Subjects

  • 2022   Statistical Mechanics I   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2022   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2022   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2022   Experiments in Materials Engineering C   Specialized Subjects

  • 2022   Experiments of Materials Engineering B   Specialized Subjects

  • 2022   Experiments of Materials Engineering A   Specialized Subjects

  • 2022   Materials Engineering Seninar   Specialized Subjects

  • 2022   Basic MechanicsⅡ   Specialized Subjects

  • 2022   Basic MechanicsⅠ   Specialized Subjects

  • 2022   Scientific and Technical English B   Specialized Subjects

  • 2022   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2021   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2021   Quantum Mechanics IB   Specialized Subjects

  • 2021   Quantum Mechanics IA   Specialized Subjects

  • 2021   Practice in Physics   Specialized Subjects

  • 2021   Experiments in Materials Engineering C   Specialized Subjects

  • 2021   Materials Engineering Seninar   Specialized Subjects

  • 2021   Basic MechanicsⅠ   Specialized Subjects

  • 2021   Statistical Mechanics II   Specialized Subjects

  • 2021   Experiments of Materials Engineering B   Specialized Subjects

  • 2021   Basic MechanicsⅡ   Specialized Subjects

  • 2021   Statistical Mechanics I   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Experiments of Materials Engineering A   Specialized Subjects

  • 2021   Basic MechanicsⅠ   Specialized Subjects

  • 2021   Scientific and Technical English B   Specialized Subjects

  • 2021   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2021   Human Enrichment through the Game of GO   Liberal Arts and Sciences Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2020   Statistical Mechanics II   Specialized Subjects

  • 2020   Statistical Mechanics I   Specialized Subjects

  • 2020   Experiments of Materials Engineering B   Specialized Subjects

  • 2020   Experiments of Materials Engineering A   Specialized Subjects

  • 2020   Materials Engineering Seninar   Specialized Subjects

  • 2020   Experiments in Materials Engineering C   Specialized Subjects

  • 2020   Quantum Mechanics IB   Specialized Subjects

  • 2020   Quantum Mechanics IA   Specialized Subjects

  • 2020   Scientific and Technical English B   Specialized Subjects

  • 2020   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2020   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2020   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2020   Practice in Physics   Specialized Subjects

  • 2020   Basic MechanicsⅡ   Specialized Subjects

  • 2020   Basic MechanicsⅡ   Specialized Subjects

  • 2019   Scientific and Technical English B   Specialized Subjects

  • 2019   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2019   Experiments in Applied Physics   Specialized Subjects

  • 2019   Advanced Lectures in Applied Physics   Specialized Subjects

  • 2019   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2019   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2019   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2019   Quantum Mechanics Ⅰ   Specialized Subjects

  • 2019   Practice in Physics   Specialized Subjects

  • 2019   Experiments in Physics   Specialized Subjects

  • 2019   Basic Mechanics   Specialized Subjects

  • 2018   Voluntary Study on Systems Engineering Ⅵ   Specialized Subjects

  • 2018   Practice in Physics   Specialized Subjects

  • 2018   Scientific and Technical English B   Specialized Subjects

  • 2018   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2018   Experiments in Applied Physics   Specialized Subjects

  • 2018   Advanced Lectures in Applied Physics   Specialized Subjects

  • 2018   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2018   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2018   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2018   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2018   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2018   Quantum Mechanics Ⅰ   Specialized Subjects

  • 2018   Experiments in Physics   Specialized Subjects

  • 2018   Basic Mechanics   Specialized Subjects

  • 2017   Experiments in Material Science and Chemistry   Specialized Subjects

  • 2017   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2017   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2017   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2017   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2017   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2017   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2017   Practice in Physics   Specialized Subjects

  • 2017   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2017   Experiments in Physics   Specialized Subjects

  • 2017   Basic Mechanics   Specialized Subjects

  • 2016   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2016   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2016   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2016   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2016   Experiments in Physics   Specialized Subjects

  • 2016   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2016   Practice in Physics   Specialized Subjects

  • 2015   Experiments in Physics   Specialized Subjects

  • 2015   Experiments in Physics   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2015   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2015   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2015   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2015   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2015   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2014   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2014   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2014   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2014   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2014   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2014   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2014   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2014   Experiments in Physics   Specialized Subjects

  • 2014   Information Processing Ⅰ   Specialized Subjects

  • 2013   Practice in Physics   Specialized Subjects

  • 2013   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2013   NA   Specialized Subjects

  • 2013   Experiments in Physics   Specialized Subjects

  • 2013   Seminar in Material Science and Chemistry ⅡA   Specialized Subjects

  • 2013   Seminar in Material Science and Chemistry ⅠA   Specialized Subjects

  • 2013   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2013   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2013   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2013   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2013   Practice in Physics   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2013   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2013   Experiments in Physics   Specialized Subjects

  • 2013   Information Processing Ⅰ   Specialized Subjects

  • 2013   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2012   Information Processing Ⅰ   Specialized Subjects

  • 2012   Experiments in Physics   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2012   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2012   Information Processing Ⅰ   Specialized Subjects

  • 2012   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2012   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2012   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2012   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2011   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2011   Experiments in Physics   Specialized Subjects

  • 2011   Experiments in Physics   Specialized Subjects

  • 2011   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2011   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2011   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2011   Special Lecture Ⅱ for Nano-science   Specialized Subjects

  • 2011   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2011   Information Processing Ⅰ   Specialized Subjects

  • 2010   Practice in Physics   Specialized Subjects

  • 2010   Advanced Material Science andChemistry Ⅰ   Specialized Subjects

  • 2010   Special Lecture Ⅰ for Nano-science   Specialized Subjects

  • 2010   Advanced Material Science andChemistry Ⅱ   Specialized Subjects

  • 2010   Experiments in Material Science andChemistry C   Specialized Subjects

  • 2010   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2010   Experiments in Material Science andChemistry B   Specialized Subjects

  • 2010   Experiments in Material Science andChemistry A   Specialized Subjects

  • 2010   Experiments in Physics   Specialized Subjects

  • 2010   Information Processing Ⅰ   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Experiments in Physics   Specialized Subjects

  • 2009   Experiments in Physics   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Experiments in Physics   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

▼display all

Satellite Courses

  • 2021   The game of Go as means of community formation   Cooperative Development Subjects

Classes

  • 2023   Systems Engineering SeminarⅠA   Master's Course

  • 2023   Systems Engineering SeminarⅠB   Master's Course

  • 2023   Systems Engineering SeminarⅡA   Master's Course

  • 2023   Systems Engineering SeminarⅡB   Master's Course

  • 2023   Advanced Quantum Mechanics   Master's Course

  • 2023   Systems Engineering Project SeminarⅠA   Master's Course

  • 2023   Systems Engineering Project SeminarⅠB   Master's Course

  • 2023   Systems Engineering Project SeminarⅡA   Master's Course

  • 2023   Systems Engineering Project SeminarⅡB   Master's Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Advanced Research   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Advanced Research   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Project SeminarⅡB   Master's Course

  • 2022   Systems Engineering Project SeminarⅡA   Master's Course

  • 2022   Systems Engineering Project SeminarⅠB   Master's Course

  • 2022   Systems Engineering Project SeminarⅠA   Master's Course

  • 2022   Advanced Quantum Mechanics   Master's Course

  • 2022   Systems Engineering SeminarⅡB   Master's Course

  • 2022   Systems Engineering SeminarⅡA   Master's Course

  • 2022   Systems Engineering SeminarⅠB   Master's Course

  • 2022   Systems Engineering SeminarⅠA   Master's Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Project SeminarⅡB   Master's Course

  • 2021   Systems Engineering Project SeminarⅡA   Master's Course

  • 2021   Systems Engineering Project SeminarⅠB   Master's Course

  • 2021   Systems Engineering Project SeminarⅠA   Master's Course

  • 2021   Advanced Quantum Mechanics   Master's Course

  • 2021   Systems Engineering SeminarⅡB   Master's Course

  • 2021   Systems Engineering SeminarⅡA   Master's Course

  • 2021   Systems Engineering SeminarⅠB   Master's Course

  • 2021   Systems Engineering SeminarⅠA   Master's Course

  • 2020   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Advanced Research   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Project SeminarⅡB   Master's Course

  • 2020   Systems Engineering Project SeminarⅡA   Master's Course

  • 2020   Systems Engineering Project SeminarⅠB   Master's Course

  • 2020   Systems Engineering Project SeminarⅠA   Master's Course

  • 2020   Advanced Quantum Mechanics   Master's Course

  • 2020   Systems Engineering SeminarⅡB   Master's Course

  • 2020   Systems Engineering SeminarⅡA   Master's Course

  • 2020   Systems Engineering SeminarⅠB   Master's Course

  • 2020   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Advanced Quantum Mechanics   Master's Course

  • 2019   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2019   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering SeminarⅡB   Master's Course

  • 2019   Systems Engineering SeminarⅡA   Master's Course

  • 2019   Systems Engineering SeminarⅠB   Master's Course

  • 2019   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Systems Engineering Project SeminarⅡB   Master's Course

  • 2019   Systems Engineering Project SeminarⅡA   Master's Course

  • 2019   Systems Engineering Project SeminarⅠB   Master's Course

  • 2019   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2018   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2018   Systems Engineering Project SeminarⅡB   Master's Course

  • 2018   Systems Engineering Project SeminarⅡA   Master's Course

  • 2018   Systems Engineering Project SeminarⅠB   Master's Course

  • 2018   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering SeminarⅡB   Master's Course

  • 2018   Systems Engineering SeminarⅡA   Master's Course

  • 2018   Systems Engineering SeminarⅠB   Master's Course

  • 2018   Systems Engineering SeminarⅠA   Master's Course

  • 2018   Advanced Quantum Mechanics   Master's Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Project SeminarⅡB   Master's Course

  • 2017   Systems Engineering Project SeminarⅡA   Master's Course

  • 2017   Systems Engineering Project SeminarⅠB   Master's Course

  • 2017   Systems Engineering Project SeminarⅠA   Master's Course

  • 2017   Lecture for carrier up in nanotechnology area   Master's Course

  • 2017   Systems Engineering SeminarⅡB   Master's Course

  • 2017   Systems Engineering SeminarⅡA   Master's Course

  • 2017   Systems Engineering SeminarⅠB   Master's Course

  • 2017   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2016   Systems Engineering Project SeminarⅡB   Master's Course

  • 2016   Systems Engineering Project SeminarⅡA   Master's Course

  • 2016   Systems Engineering Project SeminarⅠB   Master's Course

  • 2016   Systems Engineering Project SeminarⅠA   Master's Course

  • 2016   Systems Engineering SeminarⅡB   Master's Course

  • 2016   Systems Engineering SeminarⅡA   Master's Course

  • 2016   Systems Engineering SeminarⅠB   Master's Course

  • 2016   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Lecture for carrier up in nanotechnology area   Master's Course

  • 2015   Lecture for carrier up in nanotechnology area  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡA  

  • 2015   Systems Engineering SeminarⅠA  

  • 2015   Systems Engineering Project SeminarⅡA  

  • 2015   Systems Engineering Project SeminarⅠA  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅰ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡB  

  • 2015   Systems Engineering SeminarⅠB  

  • 2015   Systems Engineering Project SeminarⅡB  

  • 2015   Systems Engineering Project SeminarⅠB  

  • 2014   Systems Engineering Global Seminar Ⅱ  

  • 2014   Systems Engineering Global Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Project SeminarⅡB  

  • 2014   Systems Engineering Project SeminarⅡA  

  • 2014   Systems Engineering Project SeminarⅠB  

  • 2014   Systems Engineering Project SeminarⅠA  

  • 2014   Lecture for carrier up in nanotechnology area  

  • 2014   Systems Engineering SeminarⅡB  

  • 2014   Systems Engineering SeminarⅡA  

  • 2014   Systems Engineering SeminarⅠB  

  • 2014   Systems Engineering SeminarⅠA  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Project SeminarⅡB  

  • 2013   Systems Engineering Project SeminarⅡA  

  • 2013   Systems Engineering Project SeminarⅠB  

  • 2013   Systems Engineering Project SeminarⅠA  

  • 2013   Lecture for carrier up in nanotechnology area  

  • 2013   Systems Engineering SeminarⅡB  

  • 2013   Systems Engineering SeminarⅡA  

  • 2013   Systems Engineering SeminarⅠB  

  • 2013   Systems Engineering SeminarⅠA  

  • 2012   Lecture for carrier up in nanotechnology area  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡA  

  • 2012   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Project SeminarⅡA  

  • 2012   Systems Engineering Project SeminarⅠA  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡB  

  • 2012   Systems Engineering SeminarⅠB  

  • 2012   Systems Engineering Project SeminarⅡB  

  • 2012   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅡB  

  • 2011   Systems Engineering Project SeminarⅡA  

  • 2011   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅠA  

  • 2011   Systems Engineering Advanced Research  

  • 2011   Systems Engineering Advanced Research  

  • 2011   NA  

  • 2011   NA  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Lecture for carrier up in nanotechnology area  

  • 2010   NA  

  • 2010   NA  

  • 2010   Lecture for carrier up in nanotechnology area  

  • 2009   Systems Engineering Project SeminarⅡB  

  • 2009   Systems Engineering Project SeminarⅡA  

  • 2009   NA  

  • 2009   NA  

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

▼display all

Papers and Awards Received Related to Improving Education

  • 2011   グッドレクチャー賞   FD委員会   Domestic

Research Interests

  • First-principles calculation

Published Papers

  • Adiabatic Potential for Conformational Change of V<sub>Ga</sub>–V<sub>N</sub> Complex Defects in GaN

    Jota Nakamura, Masato Oda, Yoshihiro Kangawa (Part: Corresponding author )

    physica status solidi (b) ( Wiley )    2024.03  [Refereed]

     View Summary

    Focusing on a V<sub>Ga</sub>–V<sub>N</sub> complex vacancy defect in GaN, the adiabatic potential for conformational changes of the V<sub>Ga</sub>–V<sub>N</sub> is investigated using the density functional theory. There are two types of configurations due to the symmetry of the crystal, it is confirmed that there is almost no difference in their stability or electronic state. Using these configurations as the initial and final states, the defect reaction is analyzed when V<sub>Ga</sub>–V<sub>N</sub> moves using the climbing‐image nudged elastic band method. The reaction barrier for the migration of V<sub>Ga</sub> (V<sub>N</sub>) is found to be 2.2 (3.3) eV. It is concluded that these reactions occur frequently as GaN is annealed since the atomic diffusion potential barrier is similar to that in other semiconductors. These results suggest that V<sub>Ga</sub>–V<sub>N</sub> in GaN moves through the crystal as a pair of vacancies by alternately repeating the V<sub>Ga</sub> and the V<sub>N</sub> migration. These results provide important knowledge for elucidating the microscopic mechanism of the experimentally observed V<sub>Ga</sub>–V<sub>N</sub> aggregation reaction.

    DOI

  • (ZnO)1-x(InN)x混晶半導体の初期成長過程と電子状態

    小田将人, 古木凌太, 篠塚雄三 (Part: Lead author, Corresponding author )

    日本結晶成長学会誌   50 ( 1 ) 50-1-06_1 - 50-1-06_11   2023.04  [Refereed]  [Invited]

  • Electronic Structures of Iodine‐Doped Lithium Phthalocyanine Crystals

    Masato Oda, Noritake Koike (Part: Lead author, Last author, Corresponding author )

    physica status solidi (b) ( Wiley )  260 ( 5 )   2023.03  [Refereed]

    DOI

  • Theoretical study on adsorption state of chemisorbed oxygen molecule on partially oxidized Si(001) surface

    Nao Kadowaki, Masato Oda, Jun Nara

    Japanese Journal of Applied Physics ( IOP Publishing )  60 ( 12 ) 125501 - 125501   2021.11  [Refereed]

    DOI

  • Investigation of GaAs and AlAs atomic-layer epitaxial growth mechanism based on experimental results and first-principles total energy calculation

    Nobuyuki Ohtsuka, Masato Oda, Takashi Eshita, Ichiro Tanaka, Chihiro Itoh

    Jpn. J. Appl. Phys.   59   SGGK16   2020.02  [Refereed]

  • Study on the initial growth mechanism of (ZnO)1−x(InN)x using first-principles calculation

    Ryota Furuki, Masato Oda, Yuzo Shinozuka

    Jpn. J. Appl. Phys   59   SGGK11   2020.02  [Refereed]

  • Investigation of the electron-phonon interactions around Ga vacancies in GaN and their role in the first stage of defect reactions

    Masato Oda (Part: Lead author, Last author, Corresponding author )

    Jpn. J. Appl. Phys.   58   SCCC16   2019  [Refereed]

  • Electronic structure of (ZnO)1-x(InN)x alloys calculated by interacting quasi-band theory

    R. Furuki, M. Oda, Y. Shinozuka

    Japanese Journal of Applied Physics   58   021002   2019  [Refereed]

  • Electronic structures of a cerasome surface model

    Masato Oda (Part: Lead author, Last author, Corresponding author )

    Jpn. J. Appl. Phys.   58   SIID04   2019  [Refereed]

  • Electronic Structures of ferrocene encapsulated carbon nanotubes

    Sakai A., Oda M., Itoh C., Shinozuka Y.

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan )  73.1   1818 - 1818   2018

    DOI

  • Electronic structure calculation of Si1-xSnx compound alloy using interacting quasi-band theory

    Masato Oda, Yukina Kuroda, Ayaka Kishi, Yuzo Shinozuka (Part: Lead author )

    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS ( WILEY-V C H VERLAG GMBH )  254 ( 2 ) 1600519   2017.02  [Refereed]

     View Summary

    We investigate energy band structures of the Si1-xSnx compound alloy in the zincblende structure using interacting quasi-band (IQB) theory. We first extend the IQB theory for four-element compounds and subsequently calculate the electronic structures of the virtual Si1-xSnxSi1-ySny alloy where x=y. Diagonalizing a 20x20 non-Hermitian Hamiltonian matrix using sp(3)s* empirical tight-binding model with parameters obtained for the Si, Sn, and SiSn (zincblende) crystals, we obtain the electronic energy spectrum of the Si1-xSnx alloy for arbitrary x. Comparing the band structures, we reveal that the indirect-direct gap crossover in Si1-xSnx alloys occurs around x=0.67 with E-g=0.87eV. Calculated Sn concentration dependence of energy gaps in Si1-xSnx alloy.

    DOI

  • First-principles calculation of electron-phonon coupling at a Ga vacancy in GaN

    Takeshi Tsujio, Masato Oda, Yuzo Shinozuka (Part: Corresponding author )

    Japanese Journal of Applied Physics ( Japan Society of Applied Physics )  56 ( 9 ) 091001   2017  [Refereed]

     View Summary

    We investigate the dependence of the electronic band structure on the localized phonon mode at a Ga vacancy in GaN. The electronic states and phonon modes are both calculated using a first-principles method based on the density functional theory. Comparing the calculated electronic band structures and phonon-frequency densities of states of GaN without and with a Ga vacancy, we find that 1) there are localized electronic midgap states closely above the top of the valence band, 2) localized phonon modes appear above the acoustic and optical phonon bands, 3) one of these localized phonon modes contains asymmetric distortions in which one of the four N atoms around a Ga vacancy strongly oscillates, and 4) the localized electronic midgap states strongly couple with the localized asymmetric mode. These results indicate that a Ga vacancy can act as a nonradiative recombination center and may trigger defect reactions in GaN-based devices.

    DOI

  • First-principles study of initial oxidation process of Ge(100) surfaces

    Takahiro Mizukoshi, Masato Oda (Part: Last author, Corresponding author )

    JAPANESE JOURNAL OF APPLIED PHYSICS ( IOP PUBLISHING LTD )  55 ( 8 ) 08PE03   2016.08  [Refereed]

     View Summary

    Stable structures of oxygen atoms inserted into Ge(100) surfaces are investigated by first-principles calculations based on the density functional theory. Comparing the total energies of several models, the most stable structure is realized when oxygen atoms are inserted into the backbond of a lower dimer atom and the next bond along the (100) direction. We calculate the electronic density of states to reveal the origin of the stability. The structure is stable because a dangling bond of the lower dimer atom disappeared to form a four-coordinated structure. We also reveal that the dangling bond disappears from equal-amplitude plots of wave functions. These results are due to the strong electronegativity of the oxygen atom. (C) 2016 The Japan Society of Applied Physics

    DOI

  • Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    Ayaka Kishi, Masato Oda, Yuzo Shinozuka

    JAPANESE JOURNAL OF APPLIED PHYSICS ( IOP PUBLISHING LTD )  55 ( 5 ) 051202   2016.05  [Refereed]

     View Summary

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp(3) tight-binding models. Solving derived quasi-Hamiltonian 24 X 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III-V and II-VI wurtzite alloys: cation-substituted Al1-xGaxN and Ga1-xInxN and anion-substituted CdS1-xSex and ZnO1-xSx. The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character. (C) 2016 The Japan Society of Applied Physics

    DOI

  • 19aAR-7 Stable structures of initially oxidized Ge(100) surfaces

    Mizukoshi T., Oda M.

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  71   2486 - 2486   2016

    DOI

  • Electronic structures changed by lattice distortions at a defect in GaN

    Tsujio Takeshi, Oda Masato, Shinozuka Yuzo

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan )  71   2558 - 2558   2016

     View Summary

    <p>GaN中の欠陥反応は、デバイスの性能劣化に重大な影響を与えるがその発生機構は明らかになっていない。先行研究では、バンドギャップ中の孤立電子準位の荷電状態変化によって局在振動モードが増強され、欠陥反応が誘起される機構を簡単なモデルによって示した。本研究では第一原理計算を用い具体的な空孔欠陥を含むGaNモデルの電子状態及び振動状態解析を行った。上記欠陥反応機構が実際に起こりうることを示した。</p>

    DOI

  • Electronic States of III-V and II-VI Alloys Calculated by IQB Theory

    Ayaka Kishi, Masato Oda, Yuzo Shinozuka

    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS) ( IEEE )    2016  [Refereed]

     View Summary

    The electronic states of compound semiconductor (III-V and II-VI) alloys are calculated by the recently proposed interacting quasi-band (IQB) theory. Combining with the sp(3)(s*) empirical tight-binding model, quasi-Hamiltonian matrix facilitates the calculation of the conduction and valence bands of general alloys, A(1-x)B(x)D (AD(1-y)F(y)) for arbitrary concentration x (y) under a unified scheme. The concentration dependence of the electronic bands, including midgap states, is discussed in particular attention to constituent materials, lattice structure (zincblend or wurtzite), and substitution type (anion or cation).

  • Electronic Structures Calculation of Si1-xSnx Compound Alloy Using Inter-acting Quasi-band Model

    Masato Oda, Yukina Kuroda, Ayaka Kishi, Yuzo Shinozuka (Part: Lead author, Corresponding author )

    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS) ( IEEE )    2016  [Refereed]

  • Interacting quasi-band model for electronic states in compound semiconductor alloys: Zincblende structure

    Yuzo Shinozuka, Masato Oda

    JAPANESE JOURNAL OF APPLIED PHYSICS ( IOP PUBLISHING LTD )  54 ( 9 ) 091202   2015.09  [Refereed]

     View Summary

    The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy's energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp(3)s* model. Using the resulting 15 x 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin. (C) 2015 The Japan Society of Applied Physics

    DOI

  • Evaluation of Stretching Properties of [7]Thiaheterohelicene Framework Called "Molecular Spring" Using AFM Force Measurements and Electrostatic State Calculations

    Yoshio Nakahara, Minako Higashi, Ryoto Funayama, Yasuo Horii, Hideji Osuga, Hidefumi Sakamoto, Masato Oda, Shinpei Kado, Keiichi Kimura

    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN ( CHEMICAL SOC JAPAN )  88 ( 4 ) 544 - 550   2015.04  [Refereed]

     View Summary

    The stretching properties of a [7]thiaheterohelicene framework, what we call molecular spring, have not been investigated so far, despite a variety of [7]thiaheterohelicene derivatives having very interesting characteristics due to both the rigidity arising from fused benzene rings and the flexibility like a spring originating from helical structure. In this study, a novel [7]thiaheterohelicene derivative, which has a disulfide moiety for bonding to a gold-coated substrate and a carboxy group for reacting with an amino-modified probe tip at each of its end groups, was synthesized in order to elucidate the elasticity of the [7]thiaheterohelicene framework by atomic force microscopy (AFM). The AFM force measurements were carried out using two carboxy-terminated disulfide derivatives with or without a [7]thiaheterohelicene moiety, and the deviation between two kinds of force-extension curves was related to the stretching originating from the [7]thiaheterohelicene framework here. Furthermore, its elasticity was compared to that of biphenyl, which is generally known as a rigid framework, using electrostatic state calculations.

    DOI

  • Electronic states of a lipid membrane reinforced with siloxane bond

    Satofumi Yabushita, Masato Oda, Yuzo Shinozuka (Part: Corresponding author )

    e-Journal of Surface Science and Nanotechnology ( Surface Science Society of Japan )  12   112 - 114   2014.03  [Refereed]

     View Summary

    We investigate the electronic states of a simple model of a lipid bilayer membrane with a siloxane-bond-reinforced surface using first-principles calculations based on density functional theory. Our model is a simple representation of a cerasome, a material that has proved promising as a drug delivery medium. Analyzing the electronic density of states reveals that there is a mid-gap state originating from the Si-C antibonding state. The existence of an antibonding state at mid-gap indicates that we can selectively excite an electron to this state and thus break up the siloxane network.© 2014 Landes Bioscience.

    DOI

  • Origin of electronic transport of lithium phthalocyanine iodine crystal

    Noritake Koike, Masato Oda, Yuzo Shinozuka (Part: Corresponding author )

    AIP Conference Proceedings ( American Institute of Physics Inc. )  1566   183 - 184   2013  [Refereed]

     View Summary

    The electronic structures of Lithium Phthalocyanine Iodine are investigated using density functional theory. Comparing the band structures of several model crystals, the metallic conductivity of highly doped LiPcIx can be explained by the band of doped iodine. These results reveal that there is a new mechanism for electronic transport of doped organic semiconductors that the dopant band plays the main role. © 2013 AIP Publishing LLC.

    DOI

  • Energy-Level Alignment, Ionization, and Stability of Bio-Amino Acids at Amino Acid/Si Junctions

    Masato Oda, Takashi Nakayama

    JAPANESE JOURNAL OF APPLIED PHYSICS ( JAPAN SOCIETY APPLIED PHYSICS )  47 ( 5 ) 3712 - 3718   2008.05  [Refereed]

     View Summary

    The electronic structures of 20 bio-amino acids and amino acid/Si junctions are studied using ab initio calculations. It is shown that the amino acids can be classified into two groups depending on where the highest occupied molecular orbital (HOMO) state is localized. This classification is possible owing to the molecular structural geometry and the constituent atoms in the residue part of amino acids. Moreover, we found that, owing to the hybridization of electronic states between amino acids and Si substrate, the optical transition from the HOMO state of the amino acid to the conduction band states of Si becomes possible at the amino acid/Si interface. This result indicates the possibility of the optical ionization of amino acid by producing amino acid/semiconductor junctions. The present results provide basic data not only for the microscopic understanding of protein electronic structures but also for the electronic design of new protein functions. [DOI: 10.1143/JJAP.47.3712]

    DOI

  • Charge injection from Si substrate into amino acids

    Masato Oda, Takashi Nakayama

    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS ( INST PURE APPLIED PHYSICS )  45 ( 11 ) 8939 - 8942   2006.11  [Refereed]

     View Summary

    The electronic structures of amino acids on Si(I 11) surfaces are investigated using ab initio Hartree-Fock calculations. It is shown that six amino acids can be positively ionized when hole carriers are supplied to the Si substrate by transferring the hole charge from the Si substrate into an amino acid. This result indicates that the ionization of an amino acid, which activates protein functions, can be controlled electrically by producing amino-acid/Si junctions.

    DOI

  • Electronic-state control of amino acids on semiconductor surfaces

    M Oda, T Nakayama

    APPLIED SURFACE SCIENCE ( ELSEVIER SCIENCE BV )  244 ( 1-4 ) 627 - 630   2005.05  [Refereed]

     View Summary

    Electronic structures of amino acids on the Si(1 1 1) surfaces are investigated by using ab initio Hartree-Fock calculations. It is shown that among various polar amino acids, a histidine is the only one that can be positively ionized when hole carriers are supplied in the Si substrate, by transferring the hole charge from Si substrate to an amino acid. This result indicates that the ionization of a histidine, which will activate the protein functions, can be controlled electrically by producing amino acid/Si junctions. (c) 2004 Published by Elsevier B.V.

    DOI

  • 3P327 Control of protein function by injecting carriers from semiconductor

    Oda M., Nakayama T.

    Seibutsu Butsuri ( The Biophysical Society of Japan General Incorporated Association )  45   S285   2005

    DOI

  • 2P318 Control of protein function on semicon-ductor surfaces

    Oda M., Nakayama T.

    Seibutsu Butsuri ( The Biophysical Society of Japan General Incorporated Association )  44   S189   2004

    DOI

▼display all

Books etc

  • 力学のサボり方

    小田, 将人

    学術図書出版社  2022.03  ISBN: 9784780609981

Misc

  • Novel approach for Growth Mechanism of Atomic Layer Epitaxy of GaAs and AlAs

    Nobuyuki Ohtsuka, Masato Oda, Takashi Eshita, Ichiro Tanaka, Chihiro Itoh

    2019 International Conference on Solid State Devices and Materials     F-5-03   2019.09  [Refereed]

  • フェロセン内包CNTの電子状態計算

    境新, 小田将人, 伊東千尋, 篠塚雄三

    日本物理学会講演概要集(CD-ROM)   73 ( 1 )   2018

  • 27pAP-1 First-Principles Calculation for Initial Oxidation Process on Ge(100) Surfaces

    Mizukoshi T., Oda M., Shinozuka Y.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  69 ( 1 ) 870 - 870   2014.03

  • 26pPSB-43 Adsorption state analysis of DAT molecule on Si(111)7×7 surfaces using ab initio calculation

    Minamisako D., Oda M., Shinozuka Y.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  67 ( 1 ) 966 - 966   2012.03

  • 24pCC-3 Bias voltage dependence of STM images of DAT molecule adsorbed on Si(001) surfaces

    Oda M., Nishimura T., Sasahara A., Murata H., Arai T., Tomitori M.

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan )  67 ( 0 ) 936 - 936   2012

    DOI

  • 26pTG-6 Adsorption and electronic structures of DAT molecule on Si(001) surfaces

    Oda M., Nishimura T., Sasahara A., Murata H., Arai T., Tomitori M.

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan )  66 ( 0 ) 917 - 917   2011

    DOI

  • 23pHA-9 Electronic structures of DAT molecule on Si(001) surfaces

    Oda M., Nishimura T., Sasahara A., Murata H., Arai T., Tomitori M.

    Meeting Abstracts of the Physical Society of Japan ( The Physical Society of Japan )  66 ( 0 ) 933 - 933   2011

    DOI

  • 23aGT-4 The electronic state of Lithium Phthalocyanine Iodide (LiPcI_x) crystal

    Koike Noritake, Oda Masato, Shinozuka Yuzo

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  65 ( 1 ) 915 - 915   2010.03

  • Control of Protein Function on Semiconductor Surfaces

    ODA Masato, UMEBAYASHI You, NAKAYAMA Takashi

    電気学会研究会資料. OQD, 光・量子デバイス研究会   2009 ( 42 ) 23 - 26   2009.05

  • 22pPSA-11 The electronic structure of interface between organic SAM insulator and metal gate electrode

    Oda M., Nara J., Ohno T.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  63 ( 2 ) 829 - 829   2008.08

  • 22pPSA-17 Theoretical Study of nanosize current switching device

    Oda M., Geng W.T., Nara J., Kondo H., Ohno T.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  62 ( 2 ) 935 - 935   2007.08

  • Optical ionization of amino acids using aminoacid/semiconductor junctions

    Masato Oda, Takashi Nakayama, Takahisa Ohno

    PHYSICS OF SEMICONDUCTORS, PTS A AND B ( AMER INST PHYSICS )  893   1461 - +   2007

     View Summary

    Electronic structure and optical properties of amino acids on Si substrate are investigated using density functional calculations. It is shown that when phenylalanine, one of twenty bio amino acids, is adsorbed on Si substrate, the optical excitation probability from the HOMO of phenylalanine to the conduction bands of Si is generated. This result indicates that one can control the positive ionization of phenylalanine by optical excitations.

    DOI

  • Control of amino-acid electronic structures on semiconductor surfaces

    M Oda, T Nakayama

    Physics of Semiconductors, Pts A and B ( AMER INST PHYSICS )  772   1089 - 1090   2005

     View Summary

    Electronic structures of amino acids on the Si(111) surfaces are investigated by using ab-initio Hartree-Fock calculations. It is shown that among various ionic amino acids a histidine is the only one that can be positively ionized when hole carriers are supplied in the Si substrate, by transferring the hole charge from the Si substrate into an amino acid. This result indicates that the ionization of a histidine, which will activate the protein functions, can be controlled electrically by producing amino-acid/Si junctions.

    DOI

  • 30aYE-4 Electronic state change of amino acid on semiconductor surface

    Oda M., Nakayama T.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  59 ( 1 ) 931 - 931   2004.03

  • Electoronic Structures of Gold-luster Organic Molecular Crystals

    Oda M., Nakayama T., Takeda K.

    Meeting abstracts of the Physical Society of Japan ( The Physical Society of Japan (JPS) )  58 ( 1 ) 796 - 796   2003.03

▼display all

Awards & Honors

  • 応用物理学会2018年春季学術講演会PosterAward

    Winner: 古木凌太, 小田将人, 篠塚雄三

    2018     (ZnO)x(InN)1-x混晶半導体の電子状態の理論

Conference Activities & Talks

  • Surface Electronic States of a Cerasome model

    Masato Oda  [Invited]

    Advanced Materials Web Congress on Computational Materials and Modelling 2021  2021.01.26  

  • Microscopic Mechanism of Defect Reactions in GaN

    Masato Oda, Tsuyoshi Miyazaki  [Invited]

    International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation 2021  2021.01.20  

  • 窒化ガリウム中におけるVGa-VN周りの欠陥反応解析

    中村 城太, 小田 将人, 寒川 義裕

    第71回応用物理学会春季学術講演会  2024.03.25  

  • PHASE/0を用いたセシウム吸着風化黒雲母の溶融塩反応機構解明

    飯野千秋, 小田将人

    NIMS ナノシミュレーション ワークショップ 2023  2023.12.06  

  • Adiabatic potential for conformational change of VGa-VN complex defects in GaN

    Jota Nakamura, Masato Oda, Yoshihiro Kangawa

    14th International Conference on Nitride Semiconductors  2023.11.14  

  • Thermal Interaction between Exitons in III-Nitride Semiconductors

    Aayami Kadono, Masato Oda

    The 14th International Conference on Nitride Semiconductors  2023.11.14  

  • 第一原理計算による窒化アルミニウム上での窒化ニオブの結晶成長初期段階の解明

    中越 龍司, 小田 将人

    第84回応用物理学会秋季学術講演会  2023.09.21  

  • 溶融塩処理による和田石生成過程の反応機構

    奥本 峻介, 飯野 千秋, 小田 将人, 村口 正和, 早川 虹雪, 石井 宏幸, 本田 充紀

    第84回応用物理学会秋季学術講演会  2023.09.20  

  • III族窒化物半導体中の励起子間に働く熱的相互作用

    葛野 彩未, 小田 将人

    第84回応用物理学会秋季学術講演会  2023.09.19  

  • 第一原理計算を用いたセシウム吸着風化黒雲母の溶融塩反応機構解明

    飯野千秋, 奥本峻介, 小田将人, 奈良純, 村口正和, 石井宏幸, 本田充紀

    日本物理学会第78回年次大会  2023.09.17  

  • α-Al2O3上に蒸着した自己組織化単分子膜の電子状態

    車谷朋寛, 小田将人

    日本物理学会第78回年次大会  2023.09.16  

  • セラソーム表面電子状態に対する多角形構造の影響

    井口 楓梨, 小田 将人

    第70回応用物理学会春季学術講演会  2023.03.17  

  • 溶融塩処理による風化黒雲母からの熱電変換材料創製

    本田 充紀, 金田 結依, 村口 正和, 早川 虹雪, 小田 将人, 飯野 千秋, 石井 宏幸, 後藤 琢也, 矢板 毅

    第70回応用物理学会春季学術講演会  2023.03.15  

  • セラソームの表面電子状態の表面構造依存性

    井口楓梨, 小田将人

    第44回日本バイオマテリアル学会  2022.11.21  

  • 福島風化黒雲母を対象とした熱伝導特性の温度依存性

    早川 虹雪, 梅田 海人, 村口 正和, 木村 尚仁, 小田 将人, 飯野 千秋, 石井 宏幸, 本田 充紀

    第83回応用物理学会秋季学術講演会  2022.09.23  

  • A first-principles study of initial growth mechanism of (ZnO)1-x(InN)x

    Ryota Furuki, Masato Oda

    THE 22ND INTERNATIONAL VACUUM CONGRESS IVC-22  2022.09.14  

  • DNA上における蛍光分子とバルジ構造の相互作用

    朴泰亮, 小田将人

    日本物理学会2022年秋季大会  2022.09.14  

  • Measurement of Thermal Conductivity of Soil Clay Minerals toward Exploring Novel Thermoelectric Materials

    Kosetsu Hayakawa, Masakazu Muraguchi, Masato Oda, Chiaki Iino, Hiroyuki Ishii, Mitsunori Honda

    THE 22ND INTERNATIONAL VACUUM CONGRESS IVC-22  2022.09.14  

  • Electronic structures calculation of GaAs(1-x)Bix using Interacting quasi-band model

    Chiaki Iino, Masato Oda

    THE 22ND INTERNATIONAL VACUUM CONGRESS IVC-22  2022.09.12  

  • Electronic states of high-concentration silicon-doped gallium nitride using first- principles calculations

    Yasuhiro yamaguchi, Masato Oda

    第69回応用物理学会春季学術講演会  2022.03.24  

  • Effects of measurement terminals on thermoelectric property measurements on thermoelectric property measurement by heat transfer simulation

    Toshinobu Wakoh, Kosetsu Hayakawa, Hiroshi Matsumura, Masakazu Muraguchi, Masato Oda, Chiaki Iino, Hiroyuki Ishii, Mitsunori Honda

    第69回応用物理学会春季学術講演会  2022.03.24  

  • Measurement of Thermal Conductivity of Soil Clay Minerals treated by molten salt electrolysis

    Kosetsu Hayakawa, Hiroshi Matsumura, Toshinobu Wakoh, Masakazu Muraguchi, Masato Oda, Chiaki Iino, Hiroyuki Ishii, Mitsunori Honda

    第69回応用物理学会春季学術講演会  2022.03.22  

  • Evaluation of Thermoelectric Properties of Soil Clay Minerals for Thermoelectric Material Development

    Mitsunori Honda, Yui Kaneta, Masakazu Muraguchi, Kosetsu Hayakawa, Masato Oda, Chiaki Iino, Hiroyuki Ishii, Takuya Goto, Tsuyoshi Yaita

    第69回応用物理学会春季学術講演会  2022.03.22  

  • Electronic states investigation of layered clay minerals (Si8-xAlx)Mg6O20(OH)4

    C. Iino, M. Oda, J.Nara

    日本物理学会第76回年次大会  2022.01.16  

  • Adsorption structures of an oxygen molecule of initially oxidated Si(001) surfaces

    N. Kadowaki, M. Oda, J. Nara

    日本物理学会第76回年次大会  2022.01.16  

  • Electronic structures and the initial growth mechanism of (ZnO)1-x(InN)x

    Masato Oda, Yuzo Shinozuka, Ryota Furuki  [Invited]

    The 2nd International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation  2022.01.11  

  • Ag(111), Cu(111)表面上におけるDph-BTBT分子の吸着構造

    小田将人  [Invited]

    NIMSナノシミュレーションワークショップ2021  2021.12.09  

  • IQB理論を用いたGaAs(1-x)Bixの電子状態計算

    飯野千秋, 小田将人

    第13回ナノ構造  2021.12.03  

  • Thermoelectric Properties of Soil Clay Minerals treated by molten salt electrolysis

    Mitsunori Honda, Yui Kaneta, Masakazu Muraguchi, Masato Oda, Hiroyuki Ishii, Takuya Goto, Tsuyoshi Yaita

    第53回溶融塩化学討論会  2021.11.19  

  • Analysis of adsorption states of DPh-BTBT on Ag(111) surfaces

    A. Nakama, M.Iwasawa, Y.Ono, M.Oda, H.Ishii, Y.Yamada

    日本物理学会2021年秋季大会  2021.09.21  

  • The evolution of electronic structure of Dph-BTBT films during structural transition

    Y.Ono, M. Iwasawa, A. Nakama, M. Oda, H. Ishii, M. Sasaki, Y.Yamada

    第82回応用物理学会秋季学術講演会  2021.09.11  

  • First-principles calculation of large complex defects in GaN

    Masato Oda, Tsuyoshi Miyazaki

    2021年電気化学会秋季大会  2021.09.08  

  • 窒化ガリウム中の空孔複合欠陥の安定性と電子状態

    柿原 大嗣, 小田 将人

    第68回応用物理学会春季学術講演会  2021.03.16  

  • Electronic states calculation of GaAs1-xBix by interacting quasi-band model

    Chiaki Iino, Masato Oda

    The 8thAsian Conference on Crystal Growth and Crystal Technology  2021.03.02  

  • Effect of a Dopant for Migration Energies of (0001) oriented 5-7 edge dislocation in GaN

    Jesse C Anderson, Tsuyoshi Miyazaki, Jun Nara, Masato Oda

    The 8th Asian Conference on Crystal Growth and Crystal Technology  2021.03.02  

  • Microscopic structures of vacancy complexes in GaN

    Masato Oda

    Materials Science and Advanced Electronics Created by Singularity  2021.02.02  

  • バーミキュライト中のCsイオン吸着構造およびエネルギー安定性

    飯野千秋, 小田将人

    日本物理学会第75回年次大会  2020.03.17  

  • Si(001)表面における分子状酸素の吸着構造

    門脇菜穂, 小田将人, 奈良純

    日本物理学会第75回年次大会  2020.03.17  

  • GaN 中におけるミクロな欠陥反応機構

    小田将人

    第13回紀州吉宗セミナー  2020.01.28  

  • Conformational change from VGa to NGa-VN complex in GaN

    Taishi Kakihara, Masato Oda

    The 9th Asia-Pacific Workshop on Widegap Semiconductors  2019.11.14  

  • Migration Energies of 5-7 Edge Dislocations in GaN

    J. C. Anderson, M. Oda, J. Nara, T. Miyazaki

    The 9th Asia-Pacific Workshop on Widegap Semiconductors  2019.11.12  

  • GaN中のGa空孔周りにおける欠陥反応

    柿原 大嗣, 小田 将人

    第80回応用物理学会秋季学術講演会  2019.09.18  

  • (ZnO)1-x(InN)xの結晶成長初期段階の第一原理計算による研究

    古木凌太, 小田将人, 篠塚雄三

    第80回応用物理学会秋季学術講演会  2019.09.18  

  • Novel approach for Growth Mechanism of Atomic Layer Epitaxy of GaAs and AlAs

    N. Ohtsuka, M. Oda, T. Eshita, I. Tanaka, C. Itoh

    SSDM2019  2019.09.05  

  • Study on Initial Growth Mechanism of (ZnO)1-x(InN)x Using First PrinciplesCalculations

    R. Furuki, M. Oda, Y. Shinozuka

    SSDM2019  2019.09.04  

  • First-stage of a defect reaction around Ga vacancy in GaN

    Masato Oda

    21st International Vacuum Congress  2019.07.04  

  • 電子格子相互作用を介した欠陥反応機構

    小田将人

    第12回紀州吉宗セミナー  2019.02.15  

  • Phonon modes Analysis of AlN/InN Superlattice

    Yoshihiro Ihira, Masato Oda

    International Workshop on Nitride Semiconductors 2018  2018.11.15  

  • Electronic Structures of a NGa-VN complex defect in GaN

    Masato Oda

    International Workshop on Nitride Semiconductors 2018  2018.11.12  

  • Stable Surface Structures of a Cerasome Model

    Masato Oda

    Atomically Controlled Surfaces, Interfaces and Nanostructures 2018  2018.10.23  

  • Electronic Structure of a Cerasome Surface Model

    Masato Oda

    AiMES2018  2018.10.03  

  • (ZnO)1-x(InN)x混晶半導体の電子状態の理論

    古木凌太, 小田将人, 篠塚雄三

    日本学術振興会162委員会110回研究会・特別公開シンポジウム  2018.09.27  

  • AlN/InN半導体超格子のフォノンモード解析

    居平吉弘, 小田将人

    日本物理学会2018年秋季大会  2018.09.10  

  • Si(001)表面における分子状酸素の安定構造

    門脇菜穂, 柿原大嗣, 古木凌太, J. ANDERSON, 小田将人

    日本物理学会2018年秋季大会  2018.09.09  

  • GaN中のGa欠陥移動の機構

    小田将人

    日本物理学会2018年秋季大会  2018.09.09  

  • Migration Energy of a N Atom around Ga Vacancy in GaN

    Masato Oda

    International Symposium on Growth of III-Nitrides 2018  2018.08.07  

  • Electronic Structure of (ZnO)1-x(InN)x Alloys Calculated Using IQB Theory

    R. Furuki, M. Oda, Y. Shinozuka

    Compound Seciconductor Week 2018  2018.05.30  

  • フェロセン内包カーボンナノチューブの電子状態計算

    境新, 小田将人, 伊東千尋, 篠塚雄三

    日本物理学会第73回年次大会  2018.03.25  

  • Interacting Quasi-bandモデルを用いたSi1-xSnxの電子状態計算

    黒田侑奈, 小田将人, 篠塚雄三

    日本物理学会第73回年次大会  2018.03.23  

  • (ZnO)x(InN)1-x混晶半導体の電子状態の理論

    古木 凌太、小田 将人、篠塚 雄三

    応用物理学会第65回春季学術講演会  2018.03.20  

  • GaN中の欠陥に対する大規模電子状態計算

    小田将人

    第11回紀州吉宗セミナー  2018.03.09  

  • ヘマグルチニンと糖鎖結合状態の電子状態

    松村琢琳, 小田将人, 篠塚雄三

    日本物理学会2017年秋季大会  2017.09.24  

  • First-Principles Calculation of Electronic States of Ga2O3 Modulated by Oxygen Vacancies

    Yuto Nakano, Masato Oda, Yuzo Shinozuka

    29th International Conference on Defects in Semiconductors  2017.07.31  

  • Electron-phonon coupling at a Ga vacancy in GaN

    T. tsujio, M. Oda, Y. Shinozuka

    9th ICMAT  2017.06.21  

  • Effects of Surface Substituents on Electronic Structures of a Cerasome Model

    Masato Oda

    9th ICMAT  2017.06.19  

  • セラソーム表面の安定構造

    小田将人

    第10回紀州吉宗セミナー  2017.03.03  

  • Electronic Structures of a Cerasome Surface Model

    Masato Oda

    SSSN-KANSAI  2017.01.24  

  • 窒化物混晶半導体のIQB理論による電子状態計算

    岸 彩香, 小田将人, 篠塚雄三

    第27回光物性研究会  2016.12.03  

  • Effects of Surface Substituents on Electronic Structures of a Cerasome Surface Model

    Masato Oda

    ACSIN-13  2016.10.12  

  • セラソーム表面電子状態における置換基の影響

    小田将人

    日本物理学会2016年秋季大会  2016.09.14  

  • 酸化ガリウム中の酸素空孔によるバンド分散変化

    中野友斗, 小田将人, 篠塚雄三

    日本物理学会2016年秋季大会  2016.09.14  

  • GaN中の欠陥における格子変位が引き起こす電子状態変化

    辻尾健志, 小田将人, 篠塚雄三

    日本物理学会2016年秋季大会  2016.09.14  

  • First-principles calculation of electronic structures and phonon modes at a Ga vacancy in GaN

    T. Tsujio, M. Oda, Y. Shinozuka

    ICDIM 2016  2016.07.14  

  • ElectroniStructures Calculation of Si1-xSnx Compound Alloy Using Interacting Quasi-band Model

    M. oda, Y. Kuroda, A. Kishi, Y. Shinozuka

    Compound Seciconductor Week 2016  2016.06.27  

  • Electronic States of III-V and II-VI Alloys Calculated by IQB Theory

    A. Kishi, M. Oda, Y. Shinozuka

    Compound Seciconductor Week 2016  2016.06.27  

▼display all

Research Exchange

  • GaAsBiの電子状態計算

    2019.04
    -
    Now
     

     Joint research

  • 土壌変換材料科学

    2019.04
    -
    Now
     

     Joint research

  • Si(001)上における分子状酸素の吸着状態

    2019.04
    -
    Now
     

     Joint research

  • 新学術領域研究(研究領域提案型):フォノン科学による特異構造3次元分光評価と応用欠陥物性

    2016.04
    -
    2020.03
     

     Joint research

  • 和歌山大学独創的研究支援プロジェクトA 医療および食品応用を目指した糖鎖研究

    2016.04
    -
    2018.03
     

     Joint research

KAKENHI

  • 大規模第一原理計算によるGaN中格子欠陥、不純物の複合構造モデリング

    2023.04
    -
    2027.03
     

    Grant-in-Aid for Scientific Research(B)  Co-investigator

  • GaN中における複合空孔欠陥集合反応機構の解明

    2023.04
    -
    2027.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • 土壌粘土鉱物を利用した熱電変換材料の創製

    2022.04
    -
    2024.03
     

    Grant-in-Aid for Challenging Research(Exploratory)  Co-investigator

  • DDS応用に向けたセラソーム表面モデルの大規模電子状態計算とその開封方法の研究

    2020.04
    -
    2023.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • 電子-格子相互作用による特異構造の移動・変形の理論

    2019.04
    -
    2021.03
     

    Grant-in-Aid for Scientific Research on Innovative Areas(Research in a Proposed Research Area)  Principal investigator

  • 特異構造を介してのエネルギー転換機構の理論

    2017.04
    -
    2019.03
     

    Grant-in-Aid for Scientific Research on Innovative Areas(Research in a Proposed Research Area)  Principal investigator

  • 混晶化合物半導体における電子正孔再結合機構の研究

    2009.04
    -
    2012.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

▼display all

Joint or Subcontracted Research with foundation, company, etc.

  • 土壌粘土鉱物を利用した熱電変換材料創製に関する研究開発

    2022.04
    -
    2024.03
     

    Joint research  Principal investigator

Instructor for open lecture, peer review for academic journal, media appearances, etc.

  • 投稿論文の査読

    2024.03
    -
    2024.05

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2023.12
    -
    2024.01

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2023.11
    -
    2023.12

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2023.07
    -
    2023.08

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 非常勤講師

    2023.04.13
    -
    Now

    学校法人藍野大学 藍野大学短期大学部

     View Details

    看護師不足の解消

    授業等(物理学、統計学)

  • 投稿論文の査読

    2023.02
    -
    2023.03

    Applied Physics Express

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2022.12
    -
    2023.01

    Applied Physics Express

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2022.10
    -
    2022.11

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2022.08
    -
    2022.09

    Applied Physics Express

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2022.02
    -
    2022.03

    Surface Science, Elsevier

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2021.08
    -
    2021.09

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2021.05
    -
    2021.06

    Journal of Applied Physics, AIP Publising

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2021.02
    -
    2021.03

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2020.11
    -
    2020.12

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2020.09
    -
    2020.10

    Journal of the Physical Society of Japan

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 投稿論文の査読

    2020.05
    -
    2020.06

    Japanese Journal of Applied Physics, IOP Publishing

     View Details

    学術雑誌等の編集委員・査読・審査員等

    投稿論文の査読

  • 非常勤講師

    2020.04.01
    -
    Now

    東京医療保健大学

     View Details

    非常勤講師

    非常勤講師として「物理学」を担当する。

  • 非常勤講師

    2019.10
    -
    2020.03

    名古屋工業大学

     View Details

    非常勤講師等

    非常勤講師,任期:2019年10月~2020年3月

  • 講師

    2019.08
    -
    Now

    きのくにオリンピック科学力向上ゼミ

     View Details

    講演講師等

    講師,任期:2019年8月~

  • 非常勤講師

    2019.04
    -
    2019.09

    東京医療保健大学

     View Details

    非常勤講師等

    非常勤講師,任期:2019年4月~2019年9月

  • きのくに科学オリンピック 科学力向上ゼミ

    2019.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    県内高校生に対する科学オリンピック県内予選に向けた勉強セミナー,日付:8/7

  • 講師

    2018.08
    -
    Now

    きのくにオリンピック化学力向上ゼミ

     View Details

    講演講師等

    講師,任期:2018年8月~

  • 非常勤講師

    2018.04
    -
    2018.09

    東京医療保健大学

     View Details

    非常勤講師等

    非常勤講師,任期:2018年4月~2018年9月

  • きのくに科学オリンピック 科学力向上ゼミ

    2018.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    県内高校生に対する科学オリンピック県内予選に向けた勉強セミナー,日付:8/2

  • 非常勤講師

    2017.04
    -
    2017.09

    学校法人 藍野学院藍野大学短期大学部

     View Details

    非常勤講師等

    非常勤講師,任期:2017年4月~2017年9月

  • きのくに科学オリンピック 科学力向上ゼミ

    2017.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    県内高校生に対する科学オリンピック県内予選に向けた勉強セミナー,日付:7/27

  • 非常勤講師

    2016.04
    -
    2016.09

    学校法人 藍野学院 藍野大学短期大学部

     View Details

    非常勤講師等

    非常勤講師,任期:2016年4月-2016年9月

  • 非常勤講師

    2015.04
    -
    2015.09

    藍野大学短期大学部

     View Details

    非常勤講師等

    非常勤講師,任期:2015/04/01~2015/09/30

▼display all

Committee member history in academic associations, government agencies, municipalities, etc.

  • 応用物理学会座長

    2023.09
     

    応用物理学会

     View Details

    座長

    15.3 III属窒化物セッションの座長

  • 応用物理学会座長

    2022.03
     

    応用物理学会

     View Details

    座長

    15.3 III属窒化物セッションの座長

  • Program Committee

    2021.12
    -
    2022.01
     

    International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation 2021

     View Details

    プログラム委員

    国際シンポジウムのプログラム作成および運営支援

  • Chair

    2021.12
    -
    2022.01
     

    International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation 2021

     View Details

    座長

    国際シンポジウムのプログラム作成および運営支援

  • 応用物理学会座長

    2021.09
     

    応用物理学会

     View Details

    座長

    15.3 III属窒化物セッションの座長

  • Program Committee

    2020.12
    -
    2021.01
     

    International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation 2021

     View Details

    プログラム委員

    国際シンポジウムのプログラム作成および運営支援

  • Chair

    2020.12
    -
    2021.01
     

    International Symposium on Wide Gap Semiconductor Growth, Process and Device Simulation 2021

     View Details

    座長

    国際シンポジウムの座長

  • 客員研究者

    2018.09
    -
    Now
     

    国立研究開発法人物質・材料研究機構国際ナノアーキテクス研究拠点(MANA)

     View Details

    国や地方自治体、他大学・研究機関等での委員

    客員研究者,任期:2018年9月~2019年3月

  • Local Committee

    2009.04
     

    ISPEN-2009

     View Details

    学協会、政府、自治体等の公的委員

    学協会、政府、自治体等の公的委員,任期:2009.4~2009.4

  • 主催者

    2007.04
    -
    Now
     

    紀州吉宗セミナー

     View Details

    学協会、政府、自治体等の公的委員

    若手物性研究者を全国から集め、各々の研究分野の現状及び最新成果を発表し、議論する。,任期:2007.4~2020.3

▼display all