NISHIYAMA Hisashi

写真a

Name of department

Faculty of Education, Mathematics Education

Job title

Associate Professor

Mail Address

E-mail address

External Link


Degree 【 display / non-display

  • 博士(理学)

Association Memberships 【 display / non-display

  • 日本数学会

Research Areas 【 display / non-display

  • Natural sciences / Basic analysis / 微分方程式

 

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research) 【 display / non-display

  • 2021   Calculus Ⅰ   Specialized Subjects
  • 2021   Calculus Ⅱ   Specialized Subjects
  • 2021   Arithmetic   Specialized Subjects
  • 2021   Analysis   Specialized Subjects
  • 2021   Seminar of Mathmatical Education A   Specialized Subjects

display all >>

Satellite Courses 【 display / non-display

  • 2019   NA   Liberal Arts and Sciences Subjects
  • 2018   NA   Liberal Arts and Sciences Subjects
  • 2017   NA   Liberal Arts and Sciences Subjects
  • 2016   NA   Liberal Arts and Sciences Subjects

Classes 【 display / non-display

  • 2019   Applied Analysis   Master's Course
  • 2019   Exercises for Applied Analysis   Master's Course
  • 2018   Applied Analysis   Master's Course
  • 2018   Exercises for Applied Analysis   Master's Course
  • 2018   Seminar in Teacher Training A   Master's Course

display all >>

 

Published Papers 【 display / non-display

  • Remarks on the asymptotic behavior of the solution to damped wave equations

    Hisashi Nishiyama

    Journal of Differential Equations ( Academic Press Inc. )  261 ( 7 ) 3893 - 3940   2016.10  [Refereed]

     View Summary

    We study the diffusion phenomena for damped wave equations. We prove that the solution of an abstract damped wave equation becomes closer to the solution of a heat type equation as time tends to infinity under some assumption to the resolvent. As an application of our approach, we also study the asymptotic behavior of the damped wave equation in Euclidean space under the geometric control condition.

    DOI

  • Boundary stabilization of the waves in partially rectangular domains

    Hisashi Nishiyama

    Discrete and Continuous Dynamical Systems- Series A ( American Institute of Mathematical Sciences (AIMS) )  33 ( 4 ) 1589 - 1601   2013.04  [Refereed]

     View Summary

    We study the energy decay to the wave equation with a dissipative boundary condition on partially rectangular domains. We give a polynomial order energy decay under the assumption that the damping term may vanish on the rectangular part. A resolvent estimate for the correspondent stationary problem is proved.

    DOI

  • POLYNOMIAL DECAY FOR DAMPED WAVE EQUATIONS ON PARTIALLY RECTANGULAR DOMAINS

    Hisashi Nishiyama

    MATHEMATICAL RESEARCH LETTERS ( INT PRESS BOSTON, INC )  16 ( 5-6 ) 881 - 894   2009.09  [Refereed]

     View Summary

    We consider the energy decay of a damped wave equation on the partially rectangular domain. By using integration by parts, assuming that the damping only exists near the boundary of non-rectangular part, we can prove the polynomial type energy decay. We also give some examples which are not available in the literature.

    DOI

  • NON UNIFORM DECAY OF THE TOTAL ENERGY OF THE DISSIPATIVE WAVE EQUATION

    Hisashi Nishiyama

    OSAKA JOURNAL OF MATHEMATICS ( OSAKA JOURNAL OF MATHEMATICS )  46 ( 2 ) 461 - 477   2009.06  [Refereed]

     View Summary

    Kawashita, Nakazawa, and Soga [3] give a necessary condition for the Uniform energy decay of the dissipative wave equation whose principal term has constant coefficients. In their proof, they construct asymptotic solutions for a suitable family of the Cauchy data. In this paper, instead of the asymptotic Solutions, we consider the semiclassical measure associated with the family and extend this result to the variable coefficient case. Moreover we give some lower bound estimate for the energy decay.

Misc 【 display / non-display

  • 高等学校での統計教育の拡充を踏まえた大学での統計教育の実践

    西山尚志, 南垣内智宏

    和歌山大学「学芸」   68   133 - 136   2021.03

  • 高等学校数学における発展的学習の考察とその背景II : 4数ゲームについて

    北山 秀隆, 松山 ともこ, 西山 尚志

    和歌山大学教育学部紀要. 教育科学   69   75 - 81   2019.02

  • 数学教育の教材としてのフィボナッチ数の考察とフィボナッチ数のべき乗和の公式の一般化

    北山 秀隆, 松山 ともこ, 西口 正純, 西山 尚志, 田川 裕之, 田窪 佳寿子

    和歌山大学教育学部紀要. 教育科学   69   59 - 66   2019.02

  • 教科をつなぐ試みー大学院実践的科目「教職実践研究A」の平成30(2018)年度の授業からー

    尾上 利美 村瀬浩二 西山 尚志

    和歌山大学「学芸」   65   47 - 51   2018.03

  • 鏡を利用した数学教材について~出前授業の取り組みから~

    西山尚志

    和歌山大学「学芸」   65   87 - 91   2018.03

display all >>

Conference Activities & Talks 【 display / non-display

  • 摩擦項を持つ波動方程式の拡散現象についての一注意

    西山 尚志

    2019年度偏微分方程式集中セミナー  2019.08.08  

  • Diffusion phenomena for linear damped wave equations

    Hisashi Nishiyama

    偏微分方程式姫路研究集会  2016.03.03  

  • 摩擦項を持つ波動方程式の解の漸近挙動について

    西山 尚志

    大阪大学微分方程式セミナー  2015.12.04  

  • 摩擦項を持つ波動方程式の拡散現象について

    西山 尚志  [Invited]

    2017年度日本数学会年会  2016.03.26  

 

Instructor for open lecture, peer review for academic journal, media appearances, etc. 【 display / non-display

  • 和歌山大学附属小学校研究発表会指導助言

    2019.11
     
     

    和歌山大学附属小学校

     View Details

    公開講座・講演会の企画・講師等

    公開研究授業を対象とした助言等,日付:3日

  • 和歌山大学附属小学校研究発表会指導助言

    2018.04
     
     

    和歌山大学附属小学校

     View Details

    公開講座・講演会の企画・講師等

    公開研究授業を対象とした助言等,日付:10月27日

  • 鏡を組み合わせて立体の万華鏡をつくろう

    2018.04
     
     

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    和歌山県立粉河高校での出前講義,日付:12月12日

  • 知の冒険旅行

    2018.04
     
     

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    和歌山大学にて付属中学2年生を対象として出前講義,日付:9月25日

  • 和歌山大学附属中学校研究協議会指導助言

    2017.11
     
     

    和歌山大学附属中学校

     View Details

    公開講座・講演会の企画・講師等

    公開研究授業を対象とした解説

display all >>

Course for renewal of teaching license, teacher-librarian course, etc. (contracted business) 【 display / non-display

  • 2021  【選択】幾何の話題から(教員免許状更新講習)
  • 2020  【選択】幾何の話題から(教員免許更新講習)