Updated on 2024/12/19

写真a

 
MIKI Hirofumi
 
Name of department
Faculty of Systems Engineering, Electrical and Electronic Engineering
Job title
Associate Professor
Concurrent post
Robotics Majaor(Associate Professor)
External link

Education

  • Nagoya University   工学研究科   マイクロシステム工学専攻 (博士後期)Ph.D  

Degree

  • (BLANK)

Academic & Professional Experience

  • 2005.04

    和歌山大学システム工学部・光メカトロニクス学科

Association Memberships

  • 日本電気学会

Research Areas

  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Manufacturing and production engineering / MEMS

Classes (including Experimental Classes, Seminars, Graduation Thesis Guidance, Graduation Research, and Topical Research)

  • 2023   Trial exercises of Robotic major   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2023   Graduation Research   Specialized Subjects

  • 2023   Practice for Research in Electrical and Electronic Engineering   Specialized Subjects

  • 2023   Experiments in Electrical and Electronic Engineering B   Specialized Subjects

  • 2023   Practice in Electrical Circuit   Specialized Subjects

  • 2023   Differential and Vector Analysis   Specialized Subjects

  • 2022   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2022   Differential and Vector Analysis   Specialized Subjects

  • 2022   Experiments in Electrical and Electronic Engineering B   Specialized Subjects

  • 2022   Practice for Research in Electrical and Electronic Engineering   Specialized Subjects

  • 2022   Practice in Electrical Circuit   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2022   Graduation Research   Specialized Subjects

  • 2021   Practice for Research in Electrical and Electronic Engineering   Specialized Subjects

  • 2021   Practice in Electrical Circuit   Specialized Subjects

  • 2021   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2021   Differential and Vector Analysis   Specialized Subjects

  • 2021   Graduation Research   Specialized Subjects

  • 2021   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2020   Graduation Research   Specialized Subjects

  • 2020   Practice for Research in Electrical and Electronic Engineering   Specialized Subjects

  • 2020   Practice in Electrical Circuit   Specialized Subjects

  • 2020   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2020   Differential and Vector Analysis   Specialized Subjects

  • 2019   NA   Liberal Arts and Sciences Subjects

  • 2019   Introduction to Majors 1   Liberal Arts and Sciences Subjects

  • 2019   Practice in Electromagnetics   Specialized Subjects

  • 2019   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2019   Differential and Vector Analysis   Specialized Subjects

  • 2019   Practice for Research in Electronic Measurement   Specialized Subjects

  • 2019   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2019   Practice in Electrical Circuit   Specialized Subjects

  • 2018   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2018   Differential and Vector Analysis   Specialized Subjects

  • 2018   Introduction to Majors 2   Specialized Subjects

  • 2018   Introduction to Majors 1   Specialized Subjects

  • 2018   Practice in Electromagnetics   Specialized Subjects

  • 2018   Graduation Research   Specialized Subjects

  • 2018   Practice in Electrical Circuit   Specialized Subjects

  • 2018   Introduction to Majors 2   Specialized Subjects

  • 2018   Introduction to Majors 1   Specialized Subjects

  • 2017   Practice for reserches   Specialized Subjects

  • 2017   Practice in Electromagnetics   Specialized Subjects

  • 2017   Graduation Research   Specialized Subjects

  • 2017   Practice in Electrical Circuit   Specialized Subjects

  • 2017   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2017   Introduction to Majors 2   Specialized Subjects

  • 2017   Introduction to Majors 1   Specialized Subjects

  • 2017   Differential and Vector Analysis   Specialized Subjects

  • 2016   Applied Seminar   Specialized Subjects

  • 2016   Practice for reserches   Specialized Subjects

  • 2016   Practice in Electromagnetics   Specialized Subjects

  • 2016   Practice in Electrical Circuit   Specialized Subjects

  • 2016   Practice in Differential and Vector Analysis   Specialized Subjects

  • 2016   NA   Specialized Subjects

  • 2016   NA   Liberal Arts and Sciences Subjects

  • 2016   Practice for reserches   Specialized Subjects

  • 2016   NA   Liberal Arts and Sciences Subjects

  • 2016   Applied Seminar   Specialized Subjects

  • 2016   Differential and Vector Analysis   Specialized Subjects

  • 2015   NA   Liberal Arts and Sciences Subjects

  • 2015   NA   Specialized Subjects

  • 2015   Practice in Strength of materials   Specialized Subjects

  • 2015   Applied Seminar   Specialized Subjects

  • 2015   Introductory Seminar in Systems Engineering   Specialized Subjects

  • 2015   Experiments B for Opto-mechatronics   Specialized Subjects

  • 2015   Practice for reserches   Specialized Subjects

  • 2015   NA   Liberal Arts and Sciences Subjects

  • 2015   Practice in Strength of materials   Specialized Subjects

  • 2014   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2014   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2014   Graduation Research   Specialized Subjects

  • 2014   Applied Seminar   Specialized Subjects

  • 2014   Practice for reserches   Specialized Subjects

  • 2014   Experiments B for Opto-mechatronics   Specialized Subjects

  • 2013   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2013   Practice for reserches   Specialized Subjects

  • 2013   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2013   Graduation Research   Specialized Subjects

  • 2013   Applied Seminar   Specialized Subjects

  • 2013   NA   Specialized Subjects

  • 2013   Experiments B for Opto-mechatronics   Specialized Subjects

  • 2013   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2012   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2012   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2012   Graduation Research   Specialized Subjects

  • 2012   Applied Seminar   Specialized Subjects

  • 2012   Experiments B for Opto-mechatronics   Specialized Subjects

  • 2012   Practice for reserches   Specialized Subjects

  • 2011   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2011   Experiments B for Opto-mechatronics   Specialized Subjects

  • 2011   Practice for reserches   Specialized Subjects

  • 2011   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2011   Applied Seminar   Specialized Subjects

  • 2011   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2011   Graduation Research   Specialized Subjects

  • 2010   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2010   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   NA   Specialized Subjects

  • 2010   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2010   Graduation Research   Specialized Subjects

  • 2009   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2009   Practice for reserches   Specialized Subjects

  • 2009   NA   Specialized Subjects

  • 2009   Application maneuver for vibration and wave   Specialized Subjects

  • 2009   Applied Practice in Basic Mechanics   Specialized Subjects

  • 2009   Graduation Research   Specialized Subjects

  • 2008   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2008   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2008   Practice for reserches   Specialized Subjects

  • 2008   NA   Specialized Subjects

  • 2008   Practice in Wave and Vibration   Specialized Subjects

  • 2008   Practice in Basic Mechanics   Specialized Subjects

  • 2008   Graduation Research   Specialized Subjects

  • 2007   Practice in Basic Mechanics   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2007   Practice for reserches   Specialized Subjects

  • 2007   NA   Specialized Subjects

  • 2007   Graduation Research   Specialized Subjects

  • 2006   NA   Specialized Subjects

  • 2006   NA   Specialized Subjects

  • 2006   Practice in Basic Mechanics   Specialized Subjects

  • 2006   Introductory Seminar   Liberal Arts and Sciences Subjects

  • 2006   Graduation Research   Specialized Subjects

  • 2006   NA   Specialized Subjects

  • 2006   NA   Liberal Arts and Sciences Subjects

  • 2006   Introduction to Opto-Mechatronics   Specialized Subjects

  • 2005   NA   Specialized Subjects

  • 2005   Practice in Basic Mechanics   Specialized Subjects

  • 2005   Graduation Research   Specialized Subjects

  • 2005   NA   Specialized Subjects

  • 2005   NA   Liberal Arts and Sciences Subjects

  • 2005   Introduction to Opto-Mechatronics   Specialized Subjects

▼display all

Satellite Courses

  • 2018   Measurement and control technology in the daily life   Specialized Subjects

Classes

  • 2023   Systems Engineering Project SeminarⅡB   Master's Course

  • 2023   Systems Engineering Project SeminarⅡA   Master's Course

  • 2023   Systems Engineering Project SeminarⅠB   Master's Course

  • 2023   Systems Engineering Project SeminarⅠA   Master's Course

  • 2023   MEMS Engineering   Master's Course

  • 2023   Systems Engineering SeminarⅡB   Master's Course

  • 2023   Systems Engineering SeminarⅡA   Master's Course

  • 2023   Systems Engineering SeminarⅠB   Master's Course

  • 2023   Systems Engineering SeminarⅠA   Master's Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2023   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Advanced Research   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2022   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2022   Systems Engineering Project SeminarⅡB   Master's Course

  • 2022   Systems Engineering Project SeminarⅡA   Master's Course

  • 2022   Systems Engineering Project SeminarⅠB   Master's Course

  • 2022   Systems Engineering Project SeminarⅠA   Master's Course

  • 2022   MEMS Engineering   Master's Course

  • 2022   Systems Engineering SeminarⅡB   Master's Course

  • 2022   Systems Engineering SeminarⅡA   Master's Course

  • 2022   Systems Engineering SeminarⅠB   Master's Course

  • 2022   Systems Engineering SeminarⅠA   Master's Course

  • 2021   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Advanced Research   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2021   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2021   Systems Engineering Project SeminarⅡB   Master's Course

  • 2021   Systems Engineering Project SeminarⅡA   Master's Course

  • 2021   Systems Engineering Project SeminarⅠB   Master's Course

  • 2021   Systems Engineering Project SeminarⅠA   Master's Course

  • 2021   MEMS Engineering   Master's Course

  • 2021   Systems Engineering SeminarⅡB   Master's Course

  • 2021   Systems Engineering SeminarⅡA   Master's Course

  • 2021   Systems Engineering SeminarⅠB   Master's Course

  • 2021   Systems Engineering SeminarⅠA   Master's Course

  • 2020   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Advanced Research   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2020   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2020   Systems Engineering Project SeminarⅡB   Master's Course

  • 2020   Systems Engineering Project SeminarⅡA   Master's Course

  • 2020   Systems Engineering Project SeminarⅠB   Master's Course

  • 2020   Systems Engineering Project SeminarⅠA   Master's Course

  • 2020   MEMS Engineering   Master's Course

  • 2020   Systems Engineering SeminarⅡB   Master's Course

  • 2020   Systems Engineering SeminarⅡA   Master's Course

  • 2020   Systems Engineering SeminarⅠB   Master's Course

  • 2020   Systems Engineering SeminarⅠA   Master's Course

  • 2019   MEMS Engineering   Master's Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering Advanced Research   Doctoral Course

  • 2019   Systems Engineering SeminarⅡB   Master's Course

  • 2019   Systems Engineering SeminarⅡA   Master's Course

  • 2019   Systems Engineering SeminarⅠB   Master's Course

  • 2019   Systems Engineering SeminarⅠA   Master's Course

  • 2019   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2019   Systems Engineering Project SeminarⅡB   Master's Course

  • 2019   Systems Engineering Project SeminarⅡA   Master's Course

  • 2019   Systems Engineering Project SeminarⅡA   Master's Course

  • 2019   Systems Engineering Project SeminarⅠB   Master's Course

  • 2019   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Global Seminar Ⅱ   Doctoral Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Advanced Research   Doctoral Course

  • 2018   Systems Engineering Project SeminarⅡB   Master's Course

  • 2018   Systems Engineering Project SeminarⅡA   Master's Course

  • 2018   Systems Engineering Project SeminarⅠB   Master's Course

  • 2018   Systems Engineering Project SeminarⅠA   Master's Course

  • 2018   Systems Engineering SeminarⅡB   Master's Course

  • 2018   Systems Engineering SeminarⅡA   Master's Course

  • 2018   Systems Engineering SeminarⅠB   Master's Course

  • 2018   Systems Engineering SeminarⅠA   Master's Course

  • 2018   MEMS Engineering   Master's Course

  • 2017   Systems Engineering Global Seminar Ⅰ   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Research   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2017   Systems Engineering Advanced Seminar Ⅱ   Doctoral Course

  • 2017   Systems Engineering Project SeminarⅡB   Master's Course

  • 2017   Systems Engineering Project SeminarⅡA   Master's Course

  • 2017   Systems Engineering Project SeminarⅠB   Master's Course

  • 2017   Systems Engineering Project SeminarⅠA   Master's Course

  • 2017   MEMS Engineering   Master's Course

  • 2017   Systems Engineering SeminarⅡB   Master's Course

  • 2017   Systems Engineering SeminarⅡA   Master's Course

  • 2017   Systems Engineering SeminarⅠB   Master's Course

  • 2017   Systems Engineering SeminarⅠA   Master's Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Research   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Advanced Seminar Ⅰ   Doctoral Course

  • 2016   Systems Engineering Project SeminarⅡB   Master's Course

  • 2016   Systems Engineering Project SeminarⅡA   Master's Course

  • 2016   Systems Engineering Project SeminarⅠB   Master's Course

  • 2016   Systems Engineering Project SeminarⅠA   Master's Course

  • 2016   Systems Engineering SeminarⅡB   Master's Course

  • 2016   Systems Engineering SeminarⅡA   Master's Course

  • 2016   Systems Engineering SeminarⅠB   Master's Course

  • 2016   Systems Engineering SeminarⅠA   Master's Course

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡA  

  • 2015   Systems Engineering SeminarⅠA  

  • 2015   Systems Engineering Project SeminarⅡA  

  • 2015   Systems Engineering Project SeminarⅠA  

  • 2015   Systems Engineering Global Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Seminar Ⅱ  

  • 2015   Systems Engineering Advanced Research  

  • 2015   Systems Engineering SeminarⅡB  

  • 2015   Systems Engineering SeminarⅠB  

  • 2015   Systems Engineering Project SeminarⅡB  

  • 2015   Systems Engineering Project SeminarⅠB  

  • 2015   Systems Engineering Global Seminar Ⅱ  

  • 2014   Systems Engineering Global Seminar Ⅰ  

  • 2014   Systems Engineering Global Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Research  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅱ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Advanced Seminar Ⅰ  

  • 2014   Systems Engineering Project SeminarⅡB  

  • 2014   Systems Engineering Project SeminarⅡA  

  • 2014   Systems Engineering Project SeminarⅠB  

  • 2014   Systems Engineering Project SeminarⅠA  

  • 2014   Systems Engineering SeminarⅡB  

  • 2014   Systems Engineering SeminarⅡA  

  • 2014   Systems Engineering SeminarⅠB  

  • 2014   Systems Engineering SeminarⅠA  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Research  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅱ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Advanced Seminar Ⅰ  

  • 2013   Systems Engineering Project SeminarⅡB  

  • 2013   Systems Engineering Project SeminarⅡA  

  • 2013   Systems Engineering Project SeminarⅠB  

  • 2013   Systems Engineering Project SeminarⅠA  

  • 2013   Systems Engineering SeminarⅡB  

  • 2013   Systems Engineering SeminarⅡA  

  • 2013   Systems Engineering SeminarⅠB  

  • 2013   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡA  

  • 2012   Systems Engineering SeminarⅠA  

  • 2012   Systems Engineering Project SeminarⅡA  

  • 2012   Systems Engineering Project SeminarⅠA  

  • 2012   Systems Engineering Advanced Seminar Ⅱ  

  • 2012   Systems Engineering Advanced Seminar Ⅰ  

  • 2012   Systems Engineering Advanced Research  

  • 2012   Systems Engineering SeminarⅡB  

  • 2012   Systems Engineering SeminarⅠB  

  • 2012   Systems Engineering Project SeminarⅡB  

  • 2012   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅡB  

  • 2011   Systems Engineering Project SeminarⅡA  

  • 2011   Systems Engineering Project SeminarⅠB  

  • 2011   Systems Engineering Project SeminarⅠA  

  • 2011   Systems Engineering Advanced Research  

  • 2011   Systems Engineering Advanced Research  

  • 2011   NA  

  • 2011   NA  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅱ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   Systems Engineering Advanced Seminar Ⅰ  

  • 2011   NA   Master's Course

  • 2011   NA   Master's Course

  • 2011   NA   Master's Course

  • 2011   NA   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2010   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2009   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2008   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2007   NA   Master's Course

  • 2006   NA   Master's Course

  • 2006   NA   Master's Course

  • 2006   NA   Master's Course

  • 2006   Systems Engineering SeminarⅠB  

  • 2006   NA   Master's Course

  • 2005   NA   Master's Course

  • 2005   NA   Master's Course

  • 2005   NA   Master's Course

  • 2005   NA   Master's Course

▼display all

Satellite Courses

  • 2018   Instrument and Control in Daily Life  

Research Interests

  • MEMS (Micro Electro Mechanical Systems)、マイクロファブリケーション、医療用マイクロデバイス

Published Papers

  • Anisotropic wet etching on the β-phase poly(vinylidene fluoride) film

    Hirofumi Miki, Ryota Sugii, Taisuke Tominaga, Shigeki Tsuchitani

    Micro & Nano Letters ( Institution of Engineering and Technology (IET) )  15 ( 10 ) 666 - 669   2020.08  [Refereed]

    DOI

  • Electric field control of propulsion force of a boat driven by chemical Marangoni effect

    Shigeki Tsuchitani, Takumi Ikebe, Hirofumi Miki, Kunitomo Kikuchi

    Colloids and Surfaces A: Physicochemical and Engineering Aspects   592   2020.05  [Refereed]

     View Summary

    © 2020 Elsevier B.V. Chemical Marangoni propulsion (CMP) is a driving on fluid by surface tension imbalance around object caused by anisotropic distribution of surfactant or by the reaction of Marangoni convection caused by the surface tension gradient. The purpose of the study is a remote control of the propulsion force in CMP. Electrostatic interaction of ionic surfactants as propellant with external electric field (EF) is expected to modify the surfactant distribution and modulate the surface tension gradient. We selected surface active imidazolium-based ionic liquids (ILs) as propellants. Effects of the application of the EF (667 kV/m) to the IL layer emitted from the object on the propulsion force and the accompanying Marangoni convection were evaluated on aqueous surface. When hydrophobic ILs with [PF6] anion were used, the application of the EF decreased the propulsion force and also decreased the flow velocity and flow width of Marangoni convection. The decreasing rate of the propulsion force increased with the alkyl-chain length of the IL cations. The maximum decreasing rate was 33 %. We considered that the main reason for the EF-induced reduction in the propulsion force is the decrease in the surface tension gradient due to the increases in the surface tension of the emitted IL layers caused by the rearrangement of the surface active IL molecules on aqueous surface. This is the first report about the EF control of the propulsion force in CMP.

    DOI

  • Novel structure of microneedle arrays for the transdermal drug delivery applications

    Hirofumi Miki, Ryota Nishikata, Koji Minehira, Shigeki Tsuchitani

    IEEJ Transactions on Electrical and Electronic Engineering   14 ( 1 ) 163 - 164   2019  [Refereed]

  • Lithographic Micropatterning on the β-PVDF Film Using Reactive Ion Etching Aim for High-Resolution Skin Sensors

    Hirofumi Miki, Ryota Sugii, Yutoku Kawabata, Shigeki Tsuchitani

    IEEJ Transactions on Electrical and Electronic Engineering   14 ( 10 ) 1575 - 1577   2019  [Refereed]

  • Unstable Spreading of Ionic Liquids on an Aqueous Substrate

    Shigeki Tsuchitani, Taiga Fukutake, Daiki Mukai, Hirofumi Miki, Kunitomo Kikuchi

    LANGMUIR ( AMER CHEMICAL SOC )  33 ( 41 ) 11040 - 11046   2017.10  [Refereed]

     View Summary

    The spontaneous spreading of thin liquid films over substrate surfaces is attracting much attention due to its broad applications. Under particular conditions, surfactants deposited on substrates exhibit unstable spreading. In spite of the large effects of the stability of the spreading on the accuracy and efficiency of industrial processes that use the spreading, understanding how the stability of the spreading process is governed by the physical and chemical properties of the system is still little known. Recently, ionic liquids have been characterized as a new kind of surfactant due to their special properties. Here, we investigate the stability of the spreading of deposited imidazolium-based ionic liquids on an aqueous substrate. We focus mainly on the effects that the water solubility of the ionic liquids has on the stability. Hydrophobic ionic liquids exhibit spreading that has a highly periodic and petal-like unstable spreading front, whereas hydrophilic ionic liquids spread without such a regular spreading front and their spreading area shrinks after reaching its maximum. We propose a model for the generation of unstable spreading of hydrophobic ionic liquids, i.e., the unstable spreading front is created by the penetration of oncoming water in front of the spreading tip into the more viscous spreading ionic liquid layer, like the viscous fingering that occurs in a Hele-Shaw cell. However, the direction of the penetration is the opposite of the direction that the interface moves (the spreading direction), which is contrary to that in viscous fingering.

    DOI

  • Structural design points in arrayed micro thermal sensors (III) ~ Polymer-based approach ~

    Hirofumi Miki, Shigeki Tsuchitani

    Int. J. Engineering and Technical Research   7 ( 3 ) 24 - 32   2017  [Refereed]

  • Structural design points in arrayed micro thermal sensors (I) ~ Silicon-based approach ~

    Hirofumi Miki, Shigeki Tsuchitani

    Int. J. Engineering and Technical Research   7 ( 2 ) 36 - 44   2017  [Refereed]

  • Structural design points in arrayed micro thermal sensors (II) ~ Experimental verification ~

    Hirofumi Miki, Shigeki Tsuchitani

    Int. J. Engineering and Technical Research   7 ( 3 ) 1 - 9   2017  [Refereed]

  • Survey of Biometric Authentication and Proposal of New Sensing Mechanism

    Hirofumi Miki, Shigeki Tsuchitani

    Int. J. Engineering and Applied Sciences   3 ( 4 ) 105 - 114   2016  [Refereed]

  • Dielectric elastomer actuators using Slide-Ring Material (R) with increased permittivity

    Shigeki Tsuchitani, Tokiharu Sunahara, Hirofumi Miki

    SMART MATERIALS AND STRUCTURES ( IOP PUBLISHING LTD )  24 ( 6 )   2015.06  [Refereed]

     View Summary

    The inclusion of high permittivity nanoparticles in elastomeric materials for dielectric elastomer actuators (DEAs) is one promising method to achieve large strain at relatively low applied voltages. However, the addition of these nanoparticles tends to increase the stiffness of the elastomer and disturbs the actuation of the DEA. This is attributed to restriction of the chain motion in the elastomer by the nanoparticles. Slide-Ring Material (R) (SRM) is a cross-linked polymeric material with freely movable cross-linking sites. The internal stresses in this structure are dramatically homogenized by the pulley effect; therefore, the restriction of chain motion due to the nanoparticles is expected to be significantly reduced. We have employed SRM as a host elastomer for a DEA with the addition of ferroelectric BaTiO3 (BT) nanoparticles. The effects of BT addition on the permittivity, stiffness and viscosity of the SRM-BT nanocomposites, and the actuation strain of DEAs using SRM were evaluated. The permittivity of the nanocomposites increased linearly with the concentration of BT and reached 3.6 times that for pure SRM at 50 wt%. The elastic modulus and the viscosity remained almost constant up to 20 wt% and then decreased above this concentration. The actuation strain of a planar actuator using SRM and 50 wt% BT was four times larger than that of the DEA with pure SRM.

    DOI

  • Fabrication of microstructure array directly on beta-phase poly(vinylidene fluoride) thin film by O-2 reactive ion etching

    Hirofumi Miki, G. Matsui, M. Kanda, S. Tsuchitani

    JOURNAL OF MICROMECHANICS AND MICROENGINEERING ( IOP PUBLISHING LTD )  25 ( 3 )   2015.03  [Refereed]

     View Summary

    The ability to pattern a thin film of poly(vinylidene fluoride) (PVDF), a piezoelectric, pyroelectric and ferroelectric polymer, has potential applications in the fields of microelectromechanical systems (MEMS), nonlinear optics and nonvolatile ferroelectric random access memory technology. Low pressure O-2 reactive ion etching (RIE) was employed to realize fine pitch microstructures on a beta-phase PVDF (beta-PVDF) film for the first time; a line and space (70/130 mu m) microstructure array with a height of over 30 mu m was fabricated. Different to the traditional method of PDMS molding, the proposed technology did not result in significant loss of piezoelectricity. Furthermore, unlike the x-ray photo-etching method, there was no etching saturation limit with the proposed method. Here, we introduce the fabrication process technology in detail and report on the etching properties of the beta-PVDF film under different process conditions. The effect of process variables, such as supplied gas flow, applied RF power and etch time, on the PVDF etching characteristics were investigated in detail. The RF power and etch time showed a more predominant influence on PVDF etching progress than the gas flow. The etched depth was linearly increased with the etch time and the amount of RF power. Etching rates over 10 mu m h(-1) were achieved and increased linearly with the applied RF power. By means of a responding photomask design and control of process conditions, much finer and higher microstructure arrays are also possible.

    DOI

  • Reactive ion etching of poly(vinylidene fluoride) and its optimization

    Hirofumi Miki, K. Morimoto, T. Tamaki, S. Tsuchitani

    Int. J. Engineering and Technical Research   3 ( 3 ) 327 - 333   2015  [Refereed]

  • Microfabrication of ionic polymer actuators by selective plasma irradiation

    Kunitomo Kikuchi, Tomohisa Taniguchi, Hirofumi Miki, Shigeki Tsuchitani, Kinji Asaka

    IEEJ Transactions on Electrical and Electronic Engineering   9 ( 5 ) 572 - 574   2014.09

     View Summary

    A novel method for fabricating a miniaturized ionic polymer-metal composite (IPMC) with plated gold electrodes is developed by combining selective plasma irradiation and electroless plating. The membrane is irradiated by SF6 or CF4 plasmas through a stencil mask prior to plating to prevent deposition of a gold electrode in the plasma-irradiated area. Miniaturized IPMCs are fabricated with a 400-μm-wide line-and-space pattern. The proposed method has the potential to realize miniaturized IPMCs combined with microelectromechanical system (MEMS) devices because this provides a direct and simple fabrication process. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

    DOI

  • Chemical Propulsion Using Ionic Liquids

    S. Tsuchitani, N. Takagi, K. Kikuchi, Hirofumi Miki

    Langmuir   29 ( 9 ) 2799 - 2804   2013  [Refereed]

  • Microstructure fabrication on a beta-phase PVDF film by wet and dry etching technology

    H. Han, Y. Nakagawa, Y. Takai, K. Kikuchi, S. Tsuchitani, Y. Kosimoto

    JOURNAL OF MICROMECHANICS AND MICROENGINEERING ( IOP PUBLISHING LTD )  22 ( 8 )   2012.08  [Refereed]

     View Summary

    We report a method of fabricating microstructures directly on a thin beta-phase polyvinylidene fluoride (PVDF) film without losing much of its piezoelectricity by employing wet and dry etching technologies. The piezoelectricity of PVDF depends greatly on the temperature, as is generally known. The process conditions, including the PVDF temperature history, were evaluated in experiments where there was almost no change in the PVDF film piezoelectric constant below 60 degrees C per 4 h. The constant of d(33) in the range above 60 degrees C per 4 h linearly deteriorated with the rise in temperature by 0.3 x 10(-12) (C N-1) degrees C-1 and at a temperature of 100 degrees C per 4 h; deterioration of about 50% was confirmed. The N,N'-dimethyl acetamide (DMA: C4H9NO) solution was used as the etchant for wet etching, and O-2 plasma was used for the reactive ion etching (RIE). Tens to a hundred micrometer microstructures were easily fabricated with the proposed approach. The fabrication process technology and experimental results are also reported in detail.

    DOI

  • Long-Reach Flying Functional Inkjet System by Employing Electrostatic Acceleration

    Y. Nishimura, Hirofumi Miki, Y. Koshimoto

    International Journal on Smart Sensing and Intelligent Systems   3 ( 4 ) 756 - 770   2010  [Refereed]

  • Fundamental Study of Magnetically Levitated Contact-Free Micro-Bearing for MEMS Applications

    T. Nakao, Hirofumi Miki, Y. Koshimoto

    International Journal on Smart Sensing and Intelligent Systems   3 ( 3 ) 536 - 549   2010

  • Study of Thermal-Magnetic Driving for Next-Generation Inkjet

    S. Murai, Hirofumi Miki, Y. Koshimoto

    International Journal on Smart Sensing and Intelligent Systems   3 ( 4 ) 592 - 604   2010  [Refereed]

  • Study on Tactile Sensor by using Magnetic Suspension

    RAHIZA T., NAKA Y., HAN H., KOSHIMOTO Y.

    Transactions of the Magnetics Society of Japan ( The Magnetics Society of Japan (MSJ) )  32 ( 3 ) 187 - 190   2008

     View Summary

    This paper proposes a novel tactile sensor using magnetic suspension that consequently working between permanent magnet and magnetic material. The objective of this research is to detect shear force for the application of robotic fingertips. We proposed a freely supportive simple structure which consist of Ni-Fe pole and permanent magnet plate. The operation principle was studied by finite element method (FEM) and ±40° of optimal operation range is obtained. In this range, the movement of magnetic field core also being inspected and promising the realization of proposed idea.

    DOI

  • Exploratory development of personal authentication/identification using biometrics technology

    H.han

    Automatic Identification   21 ( 14 ) 27 - 31   2008

  • Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications

    J Han, Z Tan, K Sato, M Shikida

    JOURNAL OF MICROMECHANICS AND MICROENGINEERING ( IOP PUBLISHING LTD )  15 ( 2 ) 282 - 289   2005.02

     View Summary

    A new type of micro fingerprint sensor was proposed and the sensing principle was demonstrated using micro heaters as the sensing elements. The arrayed sensing elements were micro resistors made of sputtered 200 nm thick platinum film on a 50 1,mum thick flexible polyimide film substrate. The temperature coefficient of resistance was 0.0029 (K-1) and showed good linearity. Because of the small thermal capacity and effective thermal isolation, the resistance of the heater showed high sensitivity and short response time to the applied power. By applying a pulsed voltage of 5.4 V at ambient air, the heater temperature could be increased from room temperature to 300 degreesC in 0. 1 mus. When a fingerprint model (line and space: 100 mum; pattern height: 50 mum) made of silicone rubber was in contact with the sensor surface, contacting patterns of the fingerprint model were clearly recognized as the difference in resistance, i.e. in temperature. Micro through-holes with a diameter of 90 mum were wet etched vertically on the polyimide film substrate. The sensor array on the front surface and the wiring on the rear surface of the substrate were interconnected by depositing I mum thick copper film inside the through-holes using the electroless plating technique. The whole fabrication processes were simple and achieved in a low temperature range (< 130degreesC ) on the non-silicon, low-cost and flexible substrate.

    DOI

  • Polyimide Film Micromachining by Wet-Etching Technology

    Han Ji-song, Tan Zhi-yong, K. Sato, M. Shikida

    IEEJ Transactions on Sensors and Micromachines   125 ( 1 ) 27 - 36   2005

     View Summary

    We have presented the characteristics of polyimide (PI) film wet-etching using the commercially available and most commonly used Kapton Upilex PI-film as the testing materials and a strong alkaline solution named TPE3000 (from Toray Engineering Co., Ltd., Japan) as the etchant. We have introduced the fabrication process of micro through-holes on the PI-film by wet-etching using two types of etching-mask materials, i.e. a photosensitive dry film and thin copper film. We have also developed thermal-type micro sensor device using densely arrayed micro heaters as the sensing elements. The sensing elements were resistors made of sputtered 200-nm-thick platinum film on the thin (50-μ m-thick) flexible PI-film substrate. The electrical feed-through was arranged on the different sides of the substrate and interconnected to the micro heater elements via the wet-etched through-holes, inside walls of which were deposited with thin metal film by means of the electroless copper plating technology. The fabricated device was robust, flexible and can be attached to non-flat curved surface. © 2005, The Institute of Electrical Engineers of Japan. All rights reserved.

    DOI

  • Three-dimensional interconnect technology on a flexible polyimide film

    JS Han, ZY Tan, K Sato, M Shikida

    JOURNAL OF MICROMECHANICS AND MICROENGINEERING ( IOP PUBLISHING LTD )  14 ( 1 ) 38 - 48   2004.01

     View Summary

    We present polyimide (PI) film wet-etching technology, and a cost-effective fabrication process of three-dimensional interconnects on the thin flexible PI film. Densely arrayed micro through-holes (diameter < 100 mum) on the flexible PI film were fabricated by wet-etching technology, and three-dimensional metal interconnects were formed by the electroless Cu plating process. We have also proposed and fabricated a vertically interconnected high-density micro thermal sensor array directly on the 50 mum thick Kapton PI film, and we have performed some experiments. Sensor elements (0.1 mum thick nickel film; upper side of the PI film formed by vacuum evaporating) and electrical feed-through (1 mum thick Cu film; back side of the PI film formed by electroless Cu plating) were vertically interconnected by electroless Cu plating via the wet-etched micro through-holes. The evaporated nickel film showed good adhesion to the PI film without any pre-treatment, and its temperature coefficient of resistance was about 2600 ppm. The poor adhesion of plated Cu to the PI film surface could be improved by PI film wet treatment with a strong alkaline solution TPE3000. In the proposed sensor device, the sensing elements showed very fast thermal response and good thermal isolation from the substrate, due to its small thermal capacity and Kapton PI film inherent characteristics of excellent thermal isolation (lambda = 0.12 W/(m degreesC)).

  • Fabrication of thermal-isolation structure for microheater elements applicable to fingerprint sensors

    H Ji-song, T Kadowaki, K Sato, M Shikida

    SENSORS AND ACTUATORS A-PHYSICAL ( ELSEVIER SCIENCE SA )  100 ( 1 ) 114 - 122   2002.08

     View Summary

    We are developing a fingerprint-sensor device that has one-dimensionally arrayed high-density microheater elements. To provide thermal isolation, we designed and fabricated two sets of insulation cavities for the heater elements, one to reduce the heat transferring from the heater elements to the substrate and the other one to reduce that of heat to the wiring. The insulation cavities in the first set are etched and laterally penetrate under the heater bridges, leaving a SiO2 diaphragm with the heater bridges on it. Those in the second set are etched lengthwise of each heater element, leaving a set of SiO2-wiring bridges over them. These SiO2-wiring bridges are used to perform metal-film wiring. The wiring (an electrical feed through) is formed using the lift-off method and running on the SiO2, film surface from the heater element to the bonding pad through the SiO2-wiring bridges; in this way, the amount of heat transferred to the wiring is reduced. The fabricated sensor device was made on a (1 0 0) silicon-on-insulator (SOI) wafer using micromachining technology. Each heater bridge was 5 mum x 17 mum x 50 mum with a pitch of 80 mum. Because of its small thermal capacity and effective thermal isolation, the sensor element is very sensitive. When a 0.4 V/20 mus pulse voltage was applied to the heater elements, their resistance reached a steady maximum value in about 4-5 mus, i.e. the temperature rise was saturated promptly. (C) 2002 Elsevier Science B.V. All rights reserved.

▼display all

Books etc

  • インクジェット技術における微小液滴の吐出・衝突・乾燥

    幹浩文( Part: Contributor,  Work: p.215~224)

    技術情報協会  2009.08 

Misc

  • 乳癌検出用触診デバイスの構造解析用生体モデルの検討

    山崎 智也, 幹 浩文 (Part: Corresponding author )

    第40回「センサ・マイクロマシンと応用システム」シンポジウム     8P2-PS-24 - S-177   2023.11  [Refereed]

  • Study on the Piezoelectric PVDF Film Wet Etching

    吉田 理子, 幹 浩文 (Part: Corresponding author )

    第40回「センサ・マイクロマシンと応用システム」シンポジウム     7P2-PS-21 - S-069   2023.11  [Refereed]

  • 圧電方式の指紋センサに関する基礎検討

    堀口 凱生, 幹 浩文 (Part: Corresponding author )

    第40回「センサ・マイクロマシンと応用システム」シンポジウム     6P5-PS-25 - S-064   2023.11  [Refereed]

  • Research on the piezoelectric PVDF film weteching properties in DMA solution

    K. Yoshida, H. Miki

    39th Symposium of Sensor・actuators and Application systems   39   16P2-P-21   2022.11  [Refereed]

  • Electro active chemical Marangoni locomotor

    S. Tsuchitani, T. Ikebe, and H. Miki

    9th international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles (EuroEAP2019) ( The EuroEAP Society )    21   2019.06  [Refereed]

  • Electric field control of propulsion force of chemically driven Marangoni locomotor

    S. Tsuchitani, T. Ikebe, H. Miki, and K. Kikuchi

    ASME 2018 International Mechanical Engineering Congress & Exposition ( The American Society of Mechanical Engineers )    IMECE2018-87233   2018.11  [Refereed]

  • Etching properties of piezoelectric β-phase poly (vinylidene fluoride) film

    Hirofumi Miki, R. Sugii, S.Tsuchitani

    4th World Congress on Materials Science & Engineering ( Scientific Future Group )    48   2018.08  [Refereed]

  • A Novel structure of microneedle device and its fabrication technology by using biocompatible polyvinyl alcohol (PVA) and gelatin

    Hirofumi Miki, R. Nishikata, Y. Oku and S.Tsuchitani

    4th World Congress on Materials Science & Engineering ( Scientific Future Group )    56   2018.08  [Refereed]

  • PVDF micro machining for the high resolution skin-like tactile sensors

    Hirofumi Miki, R. Sugii, T. Kawabata, S. Tsuchitani

    Proceedings of the International Conference on Sensing Technology, ICST ( IEEE Computer Society )  2017-   1 - 4   2018.02  [Refereed]

     View Summary

    This work report PVDF micro machining process by RIE without much loss of its piezoelectric constant. L/S (70/130-μm) of fine structure was realized in this work with high etch rate. O2 mixing feed gases of CF4, CHF3, SF6 and 100 % of O2 were used. At the condition of 100% O2 gas plasma and at a higher of RF power, the better of surface state and higher of aspect ratio structure could be realized.

    DOI

  • A Novel Microneedle Device Having Flexible Substrate and Strong Needles Using PVA and Gelatin

    Nishikata Ryota, Miki Hirofumi, Tsuchitani Shigeki

    MHS2017: 28th 2017 International Symposium on Micro-Nano Mechatronics and Human Science (From Micro & Nano Scale Systems to Robotics & Mechatronics Systems) ( IEEE Robotics and Automation Society )    63-67   2017.12  [Refereed]

  • Effect of Intermitted RIE Etching on the Beta-PVDF Film Micro Patterning

    Sugii Ryota, Hirofumi Miki, Shigeki Tsuchitani

    MHS2017: 28th 2017 International Symposium on Micro-Nano Mechatronics and Human Science (From Micro & Nano Scale Systems to Robotics & Mechatronics Systems) ( IEEE Robotics and Automation Society )    172-176   2017.12  [Refereed]

  • Development of a new type of fabrication process in microneedles

    Yugo Oku, Hirofumi Miki , Shigeki Tsuchitani

    MHS2017: 28th 2017 International Symposium on Micro-Nano Mechatronics and Human Science (From Micro & Nano Scale Systems to Robotics & Mechatronics Systems) ( IEEE Robotics and Automation Society )    68-70   2017.12  [Refereed]

  • Effects of external electric field on spreading of a surfactant on aqueous surface

    Shigeki Tsuchitani, Takuya Shuto, Hirofumi Miki, Kunitomo Kikuchi

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  254   2017.08

  • A Novel Tape Testing Method for the Quantitative Adhesion Measurement

    Hirofumi Miki, Ryo Yamakuchi and Shigeki Tsuchitani

    9th International Conference on Fiber and Polymer Biotechnology ( "International Network on Polymer and Fiber Biotechnology", Co-organized by "European Federation of Biotechnology(EFB)" )    120   2016.09  [Refereed]

  • Piezoelectric Polymer Film Micromachining for the Application of a High Resolution and High Sensitive Flexible Micro Tactile Sensors

    Hirofumi Miki, Yutoku Kawabata, Yunchao Chen, Shigeki Tsuchitani

    9th International Conference on Fiber and Polymer Biotechnology ( "International Network on Polymer and Fiber Biotechnology", Co-organized by "European Federation of Biotechnology(EFB)" )    48   2016.09  [Refereed]

  • Characterization of Biocompatible Thin Gelatin Film and Its Possibility for the Micro Needle Structures

    Hirofumi Miki, Hironaga Makinose, Ryota Nishikata, Koji Minehira, Shigeki Tsuchitani

    9th International Conference on Fiber and Polymer Biotechnology ( "International Network on Polymer and Fiber Biotechnology", Co-organized by "European Federation of Biotechnology(EFB)" )    118   2016.09  [Refereed]

  • Biocompatible Gelatin Micro Needle Arrays Having a Flexible Substrate for the Transdermal Drug Delivery Applications

    Hirofumi Miki, Ryota Nishikata, Koji Minehira, Shigeki Tsuchitani

    9th International Conference on Fiber and Polymer Biotechnology ( "International Network on Polymer and Fiber Biotechnology", Co-organized by "European Federation of Biotechnology(EFB)" )    117   2016.09  [Refereed]

  • IPMC Actuators Fabricated Using MEMS Technology

    S. Tsuchitani, K. Kikuchi, I. Shimizu, T. Taniguchi, and H. MIki

    CIMTEC 2016 - 7th Forum on New Material ( National Research Council, Italy )    2016.06  [Refereed]

  • マランゴニ効果を用いた自発運動機構の電界による制御の可能性の検討

    首藤拓也, 土谷茂樹, 幹浩文, 菊地邦友

    日本機械学会関西支部 関西学生会 平成27年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 (関西学生会) )    10P16 (pp.10-16)   2016.03

  • ジルコニア粒子を分散させたシリコーンエラストマーを用いた誘電エラストマーアクチュエータ

    松下岳史, 土谷茂樹, 菊地邦友, 幹浩文

    日本機械学会関西支部 関西学生会 平成27年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 (関西学生会) )    5P12 (pp.5-12)   2016.03

  • ジルコニア粒子分散セルムエラストマーを用いた誘電エラストマーアクチュエータ

    赤尾拓哉, 土谷茂樹, 菊地邦友, 幹浩文

    日本機械学会関西支部 関西学生会 平成27年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 (関西学生会) )    5A21 (pp.5-6)   2016.03

  • 粘弾性を考慮した誘電エラストマーアクチュエータ-質量系の動的駆動解析

    木戸佑輔, 土谷茂樹, 菊地邦友, 幹浩文

    日本機械学会関西支部 関西学生会 平成27年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 (関西学生会) )    17P16 (pp.17-17)   2016.03

  • エラストマーとばねの直列引張構造をもつ誘電エラストマーアクチュエータの粘性を考慮した動作解析

    岩政 宏紀, 土谷 茂樹, 幹 浩文, 菊地 邦友

    第16回計測自動制御学会システムインテグレーション部門講演会(SI2015) ( 公益社団法人計測自動制御学会 )    1H1-3   2015.12

  • BaTiO3粒子を分散させた誘電エラストマーアクチュエータ用環動高分子の材料特性に及ぼす粒径の影響

    谷口 周平, 土谷 茂樹, 幹 浩文, 菊地 邦友

    第16回計測自動制御学会システムインテグレーション部門講演会(SI2015) ( 公益社団法人計測自動制御学会 )    1H1-2   2015.12

  • Effects of Nozzle Shape on Propulsion of A Chemical Locomotor Using Ionic Liquids

    S. Tsuchitani, Y. Shakado, H. Miki, and K. Kikuchi

    ASME 2015 International Mechanical Engineering Congress & Exposition ( ASME (American Society of Mechanical Engineers) )    IMECE2015-51085   2015.11  [Refereed]

  • ロール状誘電エラストマーアクチュエータの作製と評価

    吉田和正, 谷口周平 , 菊地邦友, 幹浩文, 土谷茂樹

    日本機械学会関西支部 関西学生会 平成26年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 関西学生会 )    1P16 (pp.1-15)   2015.03

  • イオン導電性高分子薄膜センサの周波数特性解析

    石原大地, 菊地邦友, 幹浩文, 森岡大地, 土谷茂樹

    日本機械学会関西支部 関西学生会 平成26年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 関西学生会 )    3A25 (pp.3-10)   2015.03

  • 形状記憶ポリマー一体型イオン導電性高分子アクチュエータの開発

    横井和哉, 菊地邦友, 幹浩文, 森岡大地, 土谷茂樹

    日本機械学会関西支部 関西学生会 平成26年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 関西学生会 )    6P22 (pp.6-18)   2015.03

  • 誘電エラストマーアクチュエータとバネの直列アクチュエータの動作解析

    岩政宏紀, 谷口周平 , 菊地邦友, 幹浩文, 土谷茂樹

    日本機械学会関西支部 関西学生会 平成26年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 関西学生会 )    16A15 (pp.16-5)   2015.03

  • イオン導電性高分子金属接合体を使用したソフトグリッパの開発

    中川雄貴, 菊地邦友, 幹浩文, 森岡大地, 土谷茂樹

    日本機械学会関西支部 関西学生会 平成26年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 関西学生会 )    4P24 (pp.4-19)   2015.03

  • 低侵襲医療用マイクロ触診プローブの基礎研究

    幹浩文

    第23回わかやまテクノ・ビジネスフェア わかやま発技術シーズ発表会(11/12) ( 公益財団法人わかやま産業振興財団・一般社団法人和歌山情報サービス産業協会 )    パネルディスカション   2014.11

  • 医療デバイスへの応用志向触覚センサ基礎研究

    幹浩文

    和歌山大学・大阪府立大学工学研究シーズ合同発表会 (11/10) ( 和歌山大学・大阪府立大学 )    28   2014.11

  • Effects of electric field on friction on silicon dioxide

    S. Tsuchitani, T. Hayashida, T. Inoue, H. Miki, and K. Kikuchi

    7th International Colloquium Micro-Tribology 2014 ( Polish Society of Tribology, Warsaw University of Technology )    29   2014.09  [Refereed]

  • Effects of anions used in ion-exchange process on operating characteristics of Nafion®-based IPMC with ionic liquids

    Daichi Morioka, Kunitomo Kikuchi, Hirofui Miki, Shigeki tsuchitani

    IUMRS-ICA2014 The 15th IUMRS International Conference in Asia ( MRS-J (The Material Research sciety of Japan) )    B7-O26-003   2014.08  [Refereed]

  • Characterization of the Electromechanical Properties of Miniaturized Ionic Conductive Polymer Actuator Fabricated by a Selective Plasma Treatment Method

    Kunitomo Kikuchi, Tomohisa Taniguchi, Daichi Morioka, Hirofumi Miki, Shigeki Tsuchitani

    IUMRS-ICA2014 The 15th IUMRS International Conference in Asia ( MRS-J (The Material Research sciety of Japan) )    B7-I27-005   2014.08  [Refereed]

  • Fabrication and evaluation of dielectric elastomer actuators using the two-component SeRM elastomer

    Shuhei Taniguchi, Kikuchi Kunitomo, Hirofumi Miki and Shigeki Tsuchitani

    IUMRS-ICA (International Union of Materials Research Societies, International Conference in Asia) ( MRS-J (The Material Research sciety of Japan) )    B7-O27-003   2014.08  [Refereed]

  • Microstructure Array on Thin Organic Functional Material by Ion Beam

    Hirofumi Miki, Y. Takai, G. Matsui, M.Kanda, K. Kikuchi, S. Tsuchitani,

    IUMRS-ICA2014 The 15th IUMRS International Conference in Asia ( MRS-J (The Material Research sciety of Japan) )    178 D1-P26-004   2014.08  [Refereed]

  • Spreading of ionic liquids on aqueous surface

    Shigeki Tsuchitani, Taiga Fukutake, Hirofumi Miki, Kunitomo Kikuchi

    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY ( AMER CHEMICAL SOC )  248   2014.08

  • Dry Etching of β-PVDF Film for the Application of Minimally Invasive Surgery (MIS) Palpation Microsensor

    Hirofumi Miki, Y. Takai, G. Matsui, M.Kanda, K. Kikuchi, S. Tsuchitani

    APCOT 2014 The 7th Asa-Pacific Conference on Transducers and Micro/Nano Technology ( The Society of Micro and Nano Systems; The Korean Sensors Society )    76 (P1-81)   2014.07  [Refereed]

  • A Novel Pumping Device for the Functional Inkjet System

    Hirofumi Miki, S. Murai, R. Tsuji, K.Kikuchi, S. Tsuchitani

    APCOT 2014 The 7th Asa-Pacific Conference on Transducers and Micro/Nano Technology ( The Society of Micro and Nano Systems; The Korean Sensors Society )    117 (P2-14)   2014.07  [Refereed]

  • Effects of repeated plating process on electro-mechanical response of a perfluorocarboxylic ionic polymer actuator containing ionic liquids

    Kunitomo Kikuchi, Changhon Kim, Daichi Morioka, Hirofumi Miki, Shigeki Tsuchitani 【 ページ 】

    EuroEAP 2014: 4th international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles ( European Scientific Network for Artificial Muscles - ESNAM )    33-34 (1.3.15)   2014.06  [Refereed]

  • 酸化チタンを分散させた誘電エラストマーとこれを用いたアクチュエータの作製

    堀 大, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5A11   2014.03

  • 誘電エラストマーアクチュエータの動作特性に及ぼす柔軟電極の効果に関する解析

    松藤 裕起, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5A21   2014.03

  • イオン導電性変位センサの動作特性に対する速度および変位量の影響

    藤本 勇輝, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5P13   2014.03

  • イオン液体を用いたイオン導電性高分子アクチュエータの動作特性に対するアニオンの影響

    森岡 大地, 菊地 邦友, 土谷 茂樹, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5P12   2014.03

  • 相互侵入高分子網目構造を有する誘電エラストマーアクチュエータの開発

    湯川 候士, 菊地 邦友, 土谷 茂樹, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5A22   2014.03

  • 2液型セルムエラストマーを用いた誘電エラストマーアクチュエータの作製と特性評価

    谷口 周平, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成25年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    5P23   2014.03

  • J1110101 Effects of electric field on lubrication properties of ultra thin ionic liquid film

    HAYASHIDA Takahiro, TSUCHITANI Shigeki, MIKI Hirofumi, KIKUCHI Kunitomo

    The Proceedings of Mechanical Engineering Congress, Japan ( The Japan Society of Mechanical Engineers )  2014 ( 0 ) _J1110101 - -_J1110101-   2014

     View Summary

    Friction and wear arise in contact sliding parts of machines, increases in wear and deformation of the sliding parts caused by frictional heat. Induce mechanical failure lubricants are used to prevent these problems, but lubricant is evaporated or decomposed by frictional heat. In recent years, ionic liquids are attracting much attention as new lubricants. Ionic liquids have various non-conventional physical and chemical characteristics. We used three types of imidazolium ionic liquids: BMI-PF_6 (1-Butyl-3-methylimidazolium hexafluorophosphate), HMI-PF_6 (1-Hexyl-3-methylimidazolium hexafluorophosphate), OMI-PF_6 (1-Octyl-3-methylimidazolium hexafluorophosphate) with different alkyl chain length. They were coated on Si substrates with SiO_2 layer on the surface. We measured frictional force between the substrate coated with the ionic liquid and AFM (atomic force microscope) conductive tip as voltages were applied between them. It was confirmed that frictional force increased by applying voltages. The sample coated with HMI-PF_6 exhibited the largest increase in frictional force when voltages are applied.

    DOI

  • J1130102 Effect of magnetic field on the convection of aqueous solution of magnetic ionic liquid

    MUKAI Daiki, TSUCHITANI Shigeki, MIKI Hirofumi, KIKUCHI Kunitomo

    The Proceedings of Mechanical Engineering Congress, Japan ( The Japan Society of Mechanical Engineers )  2014 ( 0 ) _J1130102 - -_J1130102-   2014

     View Summary

    Recentlt, self-motion is attracting attentions as a new motion mechanism that does not require energy supply from outside. Micro self-motion mechanism, in expected to be applied to transportations of small bodies in the water and environmental sensing devices. Among them, driving method using surface tension gradient on water surface are known. By using ionic liquids with ampliphilic chemical structure which can modify surface tention of water surface, the object can be driven by converting chemical energy into mechanical energy directly. We already, confirmed that small objects depositing an imidazolium-based ionic liquid [bmim][PF_6] (1-butyl-3-methylimidaz-olium hexafluorophosphate) moved spontaneously on water surface. In this study, by using a magnetic ionic liquid [bmim][FeCl_4](1-buthyl-3-methylimidazoium Tetrachloroferrate) containing a magnetic anion, we examined a potential application to control the direction of the self-motion by applying magnetic field.

    DOI

  • J1130101 Optimal design of mechanism of self-motion using ionic liquid

    SHAKADO Yoshifumi, TSUCHITANI Shigeki, MIKI Hirofumi, KIKUCHI Kunitomo

    The Proceedings of Mechanical Engineering Congress, Japan ( The Japan Society of Mechanical Engineers )  2014 ( 0 ) _J1130101 - -_J1130101-   2014

     View Summary

    Recently, the self-motion mechanism has attracted attention as a new motion mechanism. By realizing micro self-moving bodies which don't need energy supply from the outside and one equipped with a power source, applications of them to environmental sensing device, and transportation equipments of small objects on water surface, are possible. Since it has been reported that the self-motion on water surface in possible by using an ionic liquid [BMIM][PF_6] (1-butyl-3-methylimidazolium hexafluorophosphate) an a fuel which causes surface tension gradient on water surface and generate propulsion force, we focused on self-motion using ionic liquids. To establish method to control driving force, driving time and moving direction of this micro self-motion mechanism powered by ionic liquids. We measured driving force of a locomotion which has a nozzle to report ionic liquid on water surface and evaluated effects of the shape of the nozzle.

    DOI

  • イオン液体を含有したフレミオンベースのIPMCの電気機械特性に与える電極めっき回数の影響

    金 壯憲,菊地 邦友,幹 浩文,土谷 茂樹

    第14回 計測自動制御学会 システムインテグレーション部門講演会 (SI2013) ( 公益社団法人計測自動制御学会システムインテグレーション部門 )    3I3-4   2013.12

  • チタン酸バリウム粒子を分散させた誘電エラストマーアクチュエータ用環動高分子の電気機械的特性評価

    砂原 時春,土谷 茂樹,菊地 邦友,幹 浩文

    自動制御学会 システムインテグレーション部門講演会 (SI2013) ( 公益社団法人計測自動制御学会システムインテグレーション部門 )    3I3-2   2013.12

  • 微細パターンを有するイオン導電性高分子アクチュエータの作製精度向上と特性評価

    谷口 智久,菊地 邦友,幹 浩文,土谷 茂樹

    第14回 計測自動制御学会 システムインテグレーション部門講演会 (SI2013) ( 公益社団法人計測自動制御学会システムインテグレーション部門 )    3I3-5   2013.12

  • Evaluation of driving characteristics of miniaturized ionic polymer actuator fabricated by a selective plasma treatment method

    Kunitomo Kikuchi, Tomohisa Taniguchi, Hirofumi Miki, Shigeki Tsuchitani

    EuroEAP 2013: Third international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles ( the ‘European Scientific Network for Artificial Muscles (ESNAM)’ - COST Action MP1003 )    1.3.15   2013.06

  • Dielectric elastomers with photopolymerized interpenetrating networks

    Shigeki Tsuchitan, Satoshi Oda, Kunitomo Kikuchi, Hirofumi Miki

    EuroEAP 2013: Third international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles ( European Scientific Network for Artificial Muscles (ESNAM) )    1.3.6   2013.06  [Refereed]

  • イオン導電性高分子金属接合体のセンサ特性における寸法・湿度の影響

    田中 雄一郎, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    6A22   2013.03

  • 高分解能を有した触覚センサのためのPVDF微細加工技術の開発

    神田 宗章, 土谷 茂樹, 幹 浩文, 菊地 邦友

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    16P15   2013.03

  • 高分解能を有した触覚センサのためのPVDF微細加工技術の開発

    神田 宗章, 幹 浩文 etc.

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    16P15   2013.03

  • DEAの動作特性に及ぼすプレストレインの効果に関する解析

    若狭 淳, 土谷 茂樹, 菊地 邦友, 幹浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    14A26   2013.03

  • マイクロカテーテル用小型一酸化窒素センサの開発

    向井 大生, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    14P25   2013.03

  • フォトレジストSU-8への機能性付与

    釈迦戸 祥史, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    6A21   2013.03

  • ポリピロールアクチュエータを用いた空気中駆動可能な能動マイクロカテーテルの開発

    石原 拓明, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    14P24   2013.03

  • ポリピロールをアクチュエータとするダイヤフラム型マイクロポンプの研究

    林田 隆寛, 土谷 茂樹, 菊地 邦友, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    18A25   2013.03

  • 有限要素解析によるイオン導電性高分子アクチュエータの形状効果の検討と評価

    廣田 滉平, 菊地 邦友, 土谷 茂樹, 幹 浩文

    日本機械学会関西支部関西学生会 平成24年度学生員卒業研究発表講演会 ( 日本機械学会関西支部 )    14P11   2013.03

  • イオン液体を動力源とする自発運動機構に関する研究

    福武大河、菊地邦友、幹浩文、土谷茂樹

    平成24年度和歌山大学システム工学部・近畿大学生物理工学部大学院生研究成果発表会 ( (公財)和歌山産業振興財団、(一社)和歌山情報サービス産業協会 )    2013.02

  • ドライプロセス加工によるイオン導電性高分子アクチュエータのパターン化

    谷口智久、菊地邦友、幹浩文、土谷茂樹

    平成24年度和歌山大学システム工学部・近畿大学生物理工学部大学院生研究成果発表会 ( (公財)和歌山産業振興財団、(一社)和歌山情報サービス産業協会 )    2013.02

  • 環動高分子を用いた誘電エラストマーアクチュエータの開発

    砂原時春、菊地邦友、幹浩文、土谷茂樹

    平成24年度和歌山大学システム工学部・近畿大学生物理工学部大学院生研究成果発表会 ( (公財)和歌山産業振興財団、(一社)和歌山情報サービス産業協会 )    2013.02

  • J114014 Study on Mechanism of Self-motion Powered an Ionic Liquid

    FUKUTAKE Taiga, TSUCHITANI Shigeki, KIKUCHI Kunitomo, MIKI Hirofumi

    The Proceedings of Mechanical Engineering Congress, Japan ( The Japan Society of Mechanical Engineers )  2013 ( 0 ) _J114014 - 1-_J114014-5   2013

     View Summary

    Recently, as a new motion mechanism, the self-motion mechanism has attracted attention. By realizing micro self-motion mechanism being not required energy supply from the outside and equipped with a power source, the application in the water is expected to environmental sensing device, transport of small objects and so on. Self-motion mechanism uses the surface tension of water (cohesive force of water), and it is the mechanism to convert chemical energy to mechanical energy directly. However in the water, since the effect of viscous resistance is increased by reducing the moving body, it is required for self-motion mechanism that energy sources to generate the movement of high efficiency, large driving force, and long time. Then, since it has been reported that the self-motion of the object by attaching the ionic liquid [BMIM][PF_6] (1-butyl-3-methylimidazolium hexafluorophosphate) on the water, we focused on self-motion using ionic liquids. Thus, we intended to establish a method to control micro self-motion mechanism powered by ionic liquids. In this study, we measured the surface tension and observed the Spreading by using four ionic liquids.

    DOI

  • 918 Effects of electric field on lubrication properties of ionic liquid thin films.

    TOGANO Takeshi, TUCHITANI Shigeki, KIKUCHI Kunitomo, MIKI Hirofumi

    The Proceedings of Conference of Kansai Branch ( The Japan Society of Mechanical Engineers )  2013 ( 0 ) _9 - 18_   2013

    DOI

  • UV重合を利用した相互侵入高分子網目構造を有する誘電エラストマーの電気・機械特性評価

    小田 慧, 菊地 邦友, 幹 浩文, 土谷 茂樹

    第13回 計測自動制御学会 システムインテグレーション部門講演会(SI2012) ( 計測自動制御学会 (システムインテグレーション部門) )    1N4-6   2012.12

  • 誘電エラストマーアクチュエータ用環動高分子材料の電気機械的特性評価

    砂原 時春, 土谷 茂樹, 菊地 邦友, 幹 浩文

    第13回 計測自動制御学会 システムインテグレーション部門講演会(SI2012) ( 計測自動制御学会 (システムインテグレーション部門) )    1N4-5   2012.12

  • 微細構造を有するパター ン化IPMCの作製手法の開発

    谷口 智久, 菊地 邦友, 幹 浩文, 土谷 茂樹

    第13回 計測自動制御学会 システムインテグレーション部門講演会(SI2012) ( 計測自動制御学会 (システムインテグレーション部門) )    1N3-3   2012.12

  • Thermal Magnetic Inkjet Mechanism for the Application of Micro Pattern Fabricatin on the Highly Unlevel Micro area

    Hirofumi Miki (Han), K. Kikuchi and S. Tsuchitani

    23rd 2012 International Symposium on Micro-NanoMechatronics and Human Science ( IEEE Robotics and Automation Society )    2月9日   2012.11  [Refereed]

  • EFFECTS OF ELECTRIC FIELD ON FRICTION OF THIN IONIC LIQUID FILMS

    Shigeki Tsuchitani, Takeshi Togano, Kunitomo Kikuchi and Hirobumi Han

    6th International Colloquium MICRO-TRIBOLOGY 2012 ( Warsaw University of Technology (Faculty of Mechatronics, Institute of Micromechanics and Photonics), Polishi Society of Tribology )    24 (Session 3-4)   2012.09  [Refereed]

  • Novel Inkjet Mechanism Using Pulsed Thermal-magnetic Driving

    Hirofumi Han, Murai Shinya, Kunitomo Kikuchi, Shigeki Tsuchitani, Yasuhiro Kosimoto

    InterMag2012 IEEE International Magnetics Conference ( IEEE )    HU10   2012.07  [Refereed]

     View Summary

    A novel type of inkjet mechanism was proposed having simple structure, small size and strong pumping power. ther working mechansim and the simulation results by analysis and experiment are reported.

  • Active catheter using a conductive polymer actuator driven in air

    S. Tsuchitani, Y. Hanayama, K. Kikuchi, Hirofumi Han

    EuroEAP 2012: Second international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles ( EAP )    1.3.9   2012.05  [Refereed]

  • Improvement of a formation method of patterned electrodes for IPMC by Selective plasma treatment

    K. Kikuchi, T. Taniguchi, Hirofumi Han, S. Tsuchitani

    EuroEAP 2012: Second international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles ( EAP )    1.3.6   2012.05  [Refereed]

  • 誘電エラストマーアクチュエータの電気的特性評価

    秋山 将人(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2118   2012.03

  • 金属薄膜の密着性評価におけるテープ試験の定量化について

    山口 亮 (和歌山大),幹 浩文,菊地 邦友,土谷 茂樹

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    811   2012.03

  • PVDF-HFP多孔質体を駆動電解質として用いた空気中駆動型アクチュエータの開発

    福原 佑樹(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2107   2012.03

  • 円筒露光装置の開発

    大西 清隆(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2003   2012.03

  • 積層型誘電エラストマーアクチュエータの開発

    田中 慎也(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2121   2012.03

  • KrFエキシマレーザーによるPVDF(ポリフッ化ビニリデン)の導電性実現に伴う圧電特性への影響

    東 孝明(和歌山大),幹 浩文,菊地 邦友,土谷 茂樹

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    819   2012.03

  • PDMSを用いた静電駆動型マイクロポンプの作製

    福武 大河(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2105   2012.03

  • 針強度と基板柔軟性を両立するマイクロニードルの開発

    清水 幸平(和歌山大),幹 浩文,菊地 邦友,土谷 茂樹

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    804   2012.03

  • プラズマ照射によるイオン交換膜の改質を用いたイオン導電性高分子アクチュエータのパターン電極の作製と評価

    谷口 智久(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2106   2012.03

  • β型PVDFフィルムの微細構造加工技術について

    松井 元(和歌山大),幹 浩文,菊地 邦友,土谷 茂樹

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    716   2012.03

  • ロボット用ロール型誘電エラストマーアクチュエータの開発

    砂原 時春(和歌山大),土谷 茂樹,菊地 邦友,幹 浩文

    関西学生会平成23年度学生員卒業研究発表講演会 ( 機械学会関西支部 )    2119   2012.03

  • IPMC の電気機械特性に与えるイオン交換時の溶媒の影響

    金 壯憲, 中村 佳寛, 岡本 正臣, 菊地 邦友, 幹 浩文, 土谷 茂樹, 安積 欣志

    第12回 計測自動制御学会 システムインテグレーション部門講演会 (SI2011) ( 計測自動制御学会 )    2J2-2   2011.12

  • PVDF film micro fabrication for the robotics skin sensor having flexibility and high sensitivety

    Hirofumi Miki (Han), Yuusaku Nakagawa, Yasuyuki Takai, Kunitomo Kikuchi, Shigeki Tsuchitani (Part: Lead author, Last author, Corresponding author )

    2011 Fifth International Conference on Sensing Technology ( IEEE )    639-643   2011.11  [Refereed]

  • 誘導反発を用いた物体の安定浮上と移動制御

    近多健輔・鈴木 新・幹 浩文・越本泰弘

    平成23年電気学会全国大会 3月16日-3月18日 ( 電気学会 )  327   5-224   2011.03

  • C-5-3 磁気サスペンション及び板ばねを用いた触覚センサの基礎検討

    村井伸哉・越本泰弘・幹 浩文

    電子情報通信学会2010年総合大会 ( 電子情報通信学会 )    C-5-3   2010.03

  • Research of multipole selector with traveling wave

    Tomonori Nakamoto, Hirofumi Miki (Han) and Yasuhiro Koshimoto

    The 14th 「Intelligence mechatronics workshop」     40-43   2009.09

  • Vertical Magnetic Field Sensor configured Glancing Angle Sputtering

    S.Kobayashi, Hirofumi Miki (H.Han), Y.Koshimoto

    The 14th 「Intelligence mechatronics workshop」     114-117   2009.09

  • Functional Magnetic Nanowires using Nanoholes

    Masahiro Matsuba, Hirofumi Miki (Han), Yasuhiro Koshimoto

    The 14th 「Intelligence mechatronics workshop」     86-89   2009.09

  • Eddy current repulsion and its sensor application by using ring gap magnetic circuit

    T.takeda, T Nakao, Hirofumi Miki (Han), Y. Koshimoto

    The Papers of Technical Meeting on Magnetics, IEE Japan     39~41   2008.10

  • Electrostatic acceleration of the flying droplet

    Yasuhiro Nishimura, Hirofumi Miki (Hiro. Han) and Yasuhiro Koshimoto

    電子情報通信学会 2008.3     C-5-14   2008.03

  • Characteristics of thermal-type fingerprint sensor

    Hirofumi Miki (Hiro (J.S). Han), Yauhiro Koshimoto

    SPIE Proceedings "Biometric technology for human identification V" 18-19 March 2008 Orlando, Florida, USA ( SPIE )    Proc. of SPIE Vol. 6944 69440P1-12   2008.03  [Refereed]

  • Magnetic fluid pump by using thermo-magnetic effect

    Shinya muraii, Hirofumi Miki (Hiro. Han) and Yasuhiro Koshimoto

    電子情報通信学会 2008.3     C-5-13   2008.03

  • Basic study of photothermal magnetic drive micro actuator

    Takashi Ohkawa Hirofumi Miki (Hiro. Han) and Yasuhiro Koshimoto

    電子情報通信学会 2008.3     C-5-12   2008.03

  • Non-contact micro bearing by using eddy current levitaion

    T. Nakao, Hirofumi Miki (J. Han), Y.Koshimoto

    Digests of the 31th annul conference on MAGNETICS 2007     105   2007.09

  • Research on micro tweezers driving by electromagnetic

    A. Kimura, D Takanaka, Y. Naka, Hirofumi Miki (J. Han), Y. Koshimoto

    Digests of the 31th annul conference on MAGNETICS 2007     107   2007.09

  • Tactile sensor by utilizing magnetic suspension

    Tuty Rahiza Sajat, Hirofumi Miki (J. Han), Y. Koshimoto

    Digests of the 31th annul conference on MAGNETICS 2007     106   2007.09

  • Sensitivity improvement of SPR sensor by using double fibers

    Masanao saito, Hirofumi Miki (Ji-song Han), Yasuhiro Koshimoto

    電子情報通信学会     c-3-23 p179   2007.03

  • Large displacement novel structure by using MEMS technology

    Hiroyuki Honda, Hirofumi Miki (Ji-song Han), Yasuhiro Koshimoto

    電子情報通信学会     C-5-10 p10   2007.03

  • Thermal-type micro sensor array on PI film substrate having wet-etched through-holes for interconnection

    JS Han, ZY Tan, K Sato, M Shikida

    BOSTON TRANSDUCERS'03: DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2 ( IEEE )  June 9-12, pp.1614-1617   1614 - 1617   2003

     View Summary

    We proposed an ultra-thin structure of thermal-type micro sensor array having excellent thermal isolation and sensitivity by using 25similar to50-mum-thick polyimide (PI) film as the substrate. The device also has the attractive features of mechanical flexibility allowing three-dimensional packaging. For vertical interconnects, microvia holes (diameter <100mum) were made by PI film wet etching. Arrayed heater elements with 0.1-mum-thick nickel film were formed by using lift-off technology, and electrical feed-through with 2-mum-thick Cu film were formed by electroless Cu-plating. Heater elements (front side) and electrical feed-through (backside) were interconnected through the fabricated microvia holes using electroless Cu-plating. Fabricated heater elements (Ni) showed good adhesion with the PI film substrate, and its temperature coefficient of resistance (TCR) was 2600ppm. Because of the small thermal capacity and good thermal isolation, the sensor also showed high thermal response of less than 0.4mus when 280mV/10mus of pulse voltage was applied to the heater elements.

  • New structure and fabrication process for thermal-type microsensors

    JS Han, T Kadowaki, K Sato, M Shikida

    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VII ( SPIE-INT SOC OPTICAL ENGINEERING )  4557   386 - 394   2001

     View Summary

    We describe the structure and fabrication of a one-dimensionally arrayed high density thermal-type micro fingerprint sensor. To provide thermal isolation, we designed and fabricated two sets of insulation cavities for each heater element, one for reducing the heat-transfer from the heater to the substrate, and the other one for that of heat to the wiring. The first set of cavities were etched under each heater bridge, leaving an SiO2 diaphragm with the heater bridge on it, and laterally penetrating with the cavities of neighboring heater bridges. The second ones were etched at the both ends of each heater element, leaving a set of SiO2-wiring bridges. This SiO2-wiring bridge structure was used as a thermal isolator when performing a metal-film wiring. The wiring (an electrical feed-through) was formed by a lift-off method, and runs on the SiO2 insulation surface from the heater element to the bonding pad through the SiO2-wiring bridges. The fabricated sensor device was made on a (100) SOI (silicon-on-insulator) wafer. Each heater element was 5x17x50 ( mum(3)) with a pitch of 80 gm. Because of its small thermal capacity and effective thermal isolation, the sensor element was very sensitive. When a 0.4-V/20-mus pulse-voltage was applied to the heater elements, their resistance reached a steady maximum value in about 4similar to5 p. This level of sensitivity will be useful in variety of thermal sensors, such as micro temperature sensors and micro flow sensors, in addition to the thermal-type fingerprint sensors.

  • Analysis of Strcture & Material-Property Effects On a Thermal Type Fingerprint Sensor

    Electrical Society micromachining conference   MM-00-2   7 - 12   2000

  • アレイしたマイクロヒーター素子を持つ熱型指紋センサーの加工プロセスおよび実験研究

    センサー、マイクロマシンと応用システム第17回シンポジュウム2000     345 - 350   2000

  • Thermal type fingerprint sensor having arrayed heater elements : Ji-song Han, T.Kadowaki, K.Sato, M.Shikida

    Technical Digest of the 17<sup>th</sup> Sensor Symposium 2000 Kawasaki, May 30-31   pp.345-350   2000

  • Analysis of structure & material-property effects on a thermal type fingerprint sensor : Ji-song Han, T.Kadowaki, K.Sato, M.Shikida

    電気学会研究会資料 MM-00-1~8(マイクロマシン研究会)   2002.2.28, pp.7-12   2000

  • 熱型指紋センサーにおける構造と物性の効果解析

    マイクロマシン研究会   MM-00-2   7 - 12   2000

  • Thermal Type Fingerprint Sensor Having Arrayed Heater Elements

    Technical Digest of the 17th Sensor Symposium 2000     345 - 350   2000

  • Thermal analysis of fingerprint sensor having a micro-heater array : Ji-song Han, T.Kadowaki, K.Sato, M.Shikida

    International Symposium on Micromechtronics and Human Science (MHS'99) Nagoya Congress Center & Nagoya Municipal Industrial research Institute   Novenber 23-26, pp.199-205   1999

  • Thermal Analysis of Fingerprint Sensor Having a Microheater Array

    Ji Song Han, Tadashi Kadowaki, Kazuo Sato, Mitsuhiro Shikida

    IEEE, MHS'99 ( IEEE )    199 - 205   1999

     View Summary

    For the purpose of properties security, in particular of information systems, demands for portable fingerprint sensors are increasing. We proposed a new type of fingerprint sensor having an arrayed microheater, and successfully fabricated one-dimensional array of sensor elements on a silicon wafer using micromachining technologies. Electric resistance of each heater element is measured as signals of temperature difference between elements that are in contact or non-contact with ridges of the fingerprints. In this paper, we analyzed thermal characteristics of our sensor device using computer modeling. Effects of the following parameters were investigated
    cavity under heater, SiO2 film between heater and sensor base, heater size, input power and pulse time duration applied to the heater, material properties contacting to sensor surface etc. We concluded that making cavities under the microheater elements and having SiO2 film layer between heater element and sensor base both for the purpose of thermal insulation, is necessary to realize the performance of the proposed sensor system. From the simulation results, it was clarified that such a miniaturized heater element will work quite effective for detecting fingerprint patterns.

  • Fingerprint sensor with arrayed micro-heater elements : K.Sato, T.Kadowaki, Ji-song Han, M.Shikida

    Tech. Dig. Of The 10<sup>th</sup> International Conference on Solid-State Sensors and Acuators (Transducers'99)Sendai, Japan   June, 7-10, pp.1874-1875   1999

  • アレーしたマイクロヒーター素子を持つ指紋センサーの熱特性解析

    マイクロメカトロニクストヒューマンサイエンス     199 - 205   1999

▼display all

Conference Activities & Talks

  • 投薬量の調整可能大面積マイクロニードルデバイスの研究

    幹 浩文

    2023年度「第10回工学研究シーズ合同発表会」  2023.12.04  

  • 暮らしの中の計測と制御の技術

    幹 浩文

    南紀熊野サテライト, (大学院講義)  2018.11  

  • 低侵襲性医療用マイクロニードルアレイの研究開発

    幹 浩文

    大阪府立大学・和歌山大学 工学研究シーズ合同発表会  2017.10  

  • 低侵襲医療用マイクロ触診プローブの基礎研究

    幹 浩文

    公益財団法人わかやま産業振興 財団 第23回わかやまテクノ・ビジネスフェア, わかやま発技術シーズ発表会  2014.11  

  • 医療デバイスへの応用志向触覚センサ基礎研究

    幹 浩文

    和歌山大学・大阪府立大学工学 研究シーズ合同発表会  2014.11  

Patents

  • 感圧センサ

    Date applied: 2015.02.18 ( 特願2015-30099 )   Publication date: 2016.08.22 ( 特開2016-151531 )  

    Inventor(s)/Creator(s): 土谷茂樹、幹浩文、松下正人、岩田耕治、吉田隆彦  Applicant: 国立大学法人和歌山大学、ニッタ株式会社

Research Exchange

  • 2023年度「第10回工学研究シーズ合同発表会」

    2023.12
     
  • 柔軟性分布型感圧触覚センサに関する研究(共同研究)

    2014.04
    -
    2015.03
     

     Joint research

  • 球面多極磁界分布シミュレーション&磁気キリックトルクシミュレーション

    2007.04
    -
    2008.03
     

     Joint research

KAKENHI

  • 「なりすまし」に強い個人認証用圧電方式指紋センサの開発研究

    2024.04
    -
    2027.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • 低侵襲治療用医療器具先端に人間の指感覚の付与を目指した触覚センサの研究

    2021.04
    -
    2024.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • 微細加工を用いて指先同様に柔かく高感度・高分解能をもつ新規触覚センサは実現可能か

    2017.04
    -
    2020.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • マランゴニー効果を用いた自発運動の電磁界による能動制御

    2015.04
    -
    2018.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

  • 周辺に高段差をもつ微小領域での機能性材料マイクロパターン形成手法の研究

    2011.04
    -
    2014.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • 電子導電性高分子アクチュエータを用いた能動カテーテルの開発

    2009.04
    -
    2012.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

  • 個人認証・識別用熱方指紋センサーに関する研究

    2007.04
    -
    2010.03
     

    Grant-in-Aid for Scientific Research(C)  Principal investigator

  • パルス熱磁気駆動を用いた機能性インク吐出機構の研究

    2007.04
    -
    2010.03
     

    Grant-in-Aid for Scientific Research(C)  Co-investigator

▼display all

Public Funding (other government agencies of their auxiliary organs, local governments, etc.)

  • 海外渡航

    2011.04
    -
    2012.03
     

    Principal investigator

  • 医療用高分子マイクロマシンの開発

    2009.04
    -
    2011.03
     

    Co-investigator

  • 長距離飛翔機能性インクジェット機構の研究 - 研究代表者

    2008.04
    -
    2010.03
     

    Principal investigator

  • 柔軟性基板・高信頼性個人認証用指紋検出技術の開発(JST受託研究) - 研究代表者

    2007.04
    -
    2008.03
     

    Principal investigator

Competitive funding, donations, etc. from foundation, company, etc.

  • システム工学部寄附金(公益財団法人小笠原科学技術振興財団研究助成)

    2014.09
    -
    2015.03
     

    Research subsidy  Principal investigator

  • システム工学部寄附金(パナソニックエレクトロニックデバイス株式会社研究助成)

    2007.04
    -
    2009.03
     

    Research subsidy  Co-investigator

Instructor for open lecture, peer review for academic journal, media appearances, etc.

  • オープンキャンパス出展

    2023.07.16

    和歌山大学

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    運営参加、研究室・研究紹介,デモ・展示、運営参加

  • オープンキャンパス出展

    2022.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • オープンキャンパス出展

    2019.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • 暮らしの中の計測と制御の技術(大学院講義)

    2018.11

    南紀熊野サテライト

     View Details

    公開講座・講演会の企画・講師等

    センサ技術

  • オープンキャンパス出展

    2018.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • 工学研究シーズ合同発表会

    2017.10

    大阪府立大学・和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    企業との共同研究と連携促進:(発表テーマ: 低侵襲性医療用マイクロニードルアレイの研究開発),日付:2017.10.31

  • オープンキャンパス出展(2005 ~ 2017 )

    2017.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • オープンキャンパス出展(2005 ~ 2017 )

    2016.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • Peer review

    2016.04
    -
    Now

    Applied Sciences (論文査読員2016~)

     View Details

    学術雑誌等の編集委員・査読・審査員等

    Peer review,任期:常任(2016~ 継続中)

  • 向陽高校へ出張講座「SSH(スーパーサイエンスハイスクール)」

    2015.11

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    身のまわりの先端技術の話し,日付:13

  • オープンキャンパス出展(2005 ~ 2017 )

    2015.07

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • 第23回わかやまテクノ・ビジネスフェア

    2014.11

    公益財団法人わかやま産業振興財団

     View Details

    公開講座・講演会の企画・講師等

    新産業育成・地域資源活用(発表テーマ: 低侵襲医療用マイクロ触診プローブの基礎研究),日付:2014.11.12

  • 工学研究シーズ合同発表会

    2014.11

    大阪府立大学・和歌山大学

     View Details

    公開講座・講演会の企画・講師等

    企業との共同研究と連携促進:(発表テーマ: 医療デバイスへの応用志向触覚センサ基礎研究),日付:2014.11.10

  • Peer review

    2014.04
    -
    Now

    Biosensors (論文査読員2014~ )

     View Details

    学術雑誌等の編集委員・査読・審査員等

    Peer review,任期:常任(2014~ 継続中)

  • オープンキャンパス出展(2005 ~ 2017 )

    2014.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • オープンキャンパス出展(2005 ~ 2017 )

    2013.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    研究室・研究紹介,デモ・展示

  • Peer review

    2012.04
    -
    Now

    Sensors (論文査読員2012~ )

     View Details

    学術雑誌等の編集委員・査読・審査員等

    Peer review,任期:常任(2012~ 継続中)

  • 青少年のための科学の祭典: おもしろ科学まつり出展「めっきで絵を描こう」

    2010.12

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    赤い銅板の上にマジックで絵を描き、その上にめっきするとマジックで書いたところはめっきされず、めっきされたところは銀色になる。それを利用して金属の色の違いを見る実験です。亜鉛めっきされた銅板を加熱すると、金色の「真鍮めっき」になります。,日付:2010.12

  • 青少年のための科学の祭典: おもしろ科学まつり出展「永久磁石を使ってものを動かす」

    2009.11

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    「永久磁石を使ってものを動かす」というテーマで、青少年のための科学の祭典に展示のため、数ヶ月前から準備をし、子供達に理科・科学に対する関心・感動を高めようと努力した。(水を入れた細長い水路の両脇に電極を付けて電流を流し、水路の下に磁石を置く。磁石と水は引き付けあったり反発しあったりしませんが、水は磁界から力を受けてある方向に流れ始める),日付:2009.11

  • 青少年のための科学の祭典: おもしろ科学祭り出展「電磁石で音を出す」

    2008.10

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    「電磁石で音を出す」電磁石に電流を流すと、磁石と同じように目には見えない磁力線が出て鉄板を引き付けます。この電流を変化させると磁力線の数が変化するので引き付ける力が変化し、音の電流を流すと、鉄板でできたもの(缶やバケツなど)が振動してスピーカのように音を出します。普通、アルミや銅は磁石に引き付けられませんが特殊な電流を流すと鉄板と同じく音を出すことを実演展示しました。(小・中学・高校生500),日付:2008.10

  • 中国語講座 (2005~2008)

    2008.04

    不明

     View Details

    公開講座・講演会の企画・講師等

    学生の要望に答えて(光メカトロニクス学科&精密物質学科の学生が受講している。週一回。時間:金曜日18:00~20:00、場所:A304室),日付:2005.4~2008

  • 青少年のための科学の祭典: おもしろ科学祭り出展「めっきで絵を描こう」

    2007.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    「めっきで絵を描こう」金属は水にはほとんど溶けないが、特殊な状態では溶けることができる。溶けた金属はイオン状態になって独特の色を表し、金属の溶けた液はまるで色の付いた透明な水に見える。この液の金属イオンをほかのものの表面にくっつけることを「めっき」という。赤色の銅板にマジックで絵をかき、その上にめっきするとマジックで書いたところめっきが乗らない。この現象を利用して同じ金属の色違いを見せてもらう。,日付:2007.10~2007.9

  • 青少年のための科学の祭典: おもしろ科学祭り出展「ポリスチロールでスタンプを作ろう」

    2006.10

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    ポリスチロールでスタンプを作ろう和歌山地元の特産である蜜柑に注目し、蜜柑の皮に含まれている「レモネン」が発泡スチロールだけを溶かす性質を利用して凸版スタンプをつくる。本研究室の特徴の一つであるエッチング技術を活用しての例である。,日付:2006.10

  • 韓国語講座

    2005.04

    不明

     View Details

    公開講座・講演会の企画・講師等

    学生の要望に答えて(光メカトロニクス学科の学生が受講している。週一回17:00~18:30),日付:2005.4~2005.8

  • 青少年のための科学の祭典: おもしろ科学祭り出展「しおりを作ろう」

    2005.04

    その他

     View Details

    小・中・高校生を対象とした学部体験入学・出張講座等

    しおりを作ろう エッチングという技術を利用して、しおりを作る。 この技術は身の回りのほとんどの電気製品のなかで部品同士を接続する配線を作るのに使われている。 子供達に見回りの製品関連技術の理解から、科学に対する興味を持たせたいのが宗旨である。 ,日付:2005.10

▼display all

Committee member history in academic associations, government agencies, municipalities, etc.

  • 実行委員

    2014.04
    -
    2014.09
     

    2014年度教育システム情報学会 JSISE

     View Details

    学協会、政府、自治体等の公的委員

    企画

  • 実行委員

    2013.04
    -
    2014.03
     

    第19回知能メカトロニクスワークショップ

     View Details

    学協会、政府、自治体等の公的委員

    企画

  • technical program committee

    2010.10
    -
    2012.03
     

    ICST(International Conference on Sensing Technology )

     View Details

    学協会、政府、自治体等の公的委員

    実行委員・論文査読

  • 発表会座長

    2010.09
    -
    2011.03
     

    第14回知能メカトロニクスワークショップ

     View Details

    学協会、政府、自治体等の公的委員

    学協会、政府、自治体等の公的委員

Other Social Activities

  • 高校訪問(5校)

    2023.11.13
    -
    2023.11.16

    公立・私立高校

     View Details

    入試・広報

    入試・広報委員(和歌山大学システム工学部の説明)

  • 企業訪問(1社)

    2020.03

    その他

     View Details

    社会との連携を推進する活動

    三菱電機エンジニアリング㈱を訪問し、卒業生の活躍ぶりの確認と企業側の評価・ニーズの調査および本学の一学科制について説明を行い,大学と企業との連携を深めることによって今後社会に必要な人材育成を有効に進める取組を行った。

  • 企業訪問(1社)

    2017.10

    その他

     View Details

    社会との連携を推進する活動

    関西日立(株)を訪問し、卒業生の活躍ぶりの確認と企業側の評価・ニーズの調査および本学の一学科制について説明を行い,大学と企業との連携を深めることによって今後社会に必要な人材育成を有効に進める取組を行った。

  • 第6回システム工学部同窓会

    2016.10

    その他

     View Details

    社会との連携を推進する活動

    第6回システム工学部同窓会に出席し,OB学生や退職教員との親睦を深めると同時に社会との連携を推進するいい機会であった。

  • 企業訪問(2社)

    2016.01

    その他

     View Details

    社会との連携を推進する活動

    ダイハツ工業(株)とパナソニックフォト・ライティング(株)2社を訪問し、卒業生の活躍ぶりの確認と企業側の評価・ニーズの調査および本学の一学科制について説明を行い,大学と企業との連携を深めることによって今後社会に必要な人材育成を有効に進める取組を行った。